Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
Features
LPDDR4X/LPDDR4 SDRAM
MT53E512M32D1, MT53E1G32D2, MT53E512M64D2
Features
• Single-ended CK and DQS support
This data sheet is for LPDDR4X and LPDDR4 unified
product based on LPDDR4X information. As for
LPDDR4 setting, refer to General LPDDR4 Specification
at the end of this data sheet.
Options
Marking
• VDD1/VDD2/VDDQ: 1.80V/1.10V/0.60V or
1.10V
• Array configuration
– 512 Meg x 32 (2 channels x 16 I/O)
– 1 Gig x 32 (2 channels x 16 I/O)
– 512 Meg x 64 (4 channels x 16 I/O)
• Device configuration
– 512M32 x 1 die in package
– 512M32 x 2 die in package
• FBGA “green” package
– 200-ball TFBGA (10mm × 14.5mm x
1.05mm, Ø0.40 SMD)
– 200-ball TFBGA (10mm × 14.5mm x
1.1mm, Ø0.40 SMD)
– 376-ball WFBGA (14mm × 14mm x
0.71mm, Ø0.24 SMD)
– 556-ball TFBGA (12.4mm × 12.4mm x
1.1mm, Ø0.24 SMD)
• Speed grade, cycle time
– 468ps @ RL = 36/40
• Operating temperature range
– –25°C to +85°C
– –40°C to +95°C
• Revision
• Ultra-low-voltage core and I/O power supplies
– VDD1 = 1.70–1.95V; 1.80V nominal
– VDD2 = 1.06–1.17V; 1.10V nominal
– VDDQ = 0.57–0.65V; 0.60V nominal
or VDDQ = 1.06–1.17V; 1.10V nominal
• Frequency range
– 2133–10 MHz (data rate range per pin: 4266–20
Mb/s)
• 16n prefetch DDR architecture
• 8 internal banks per channel for concurrent operation
• Single-data-rate CMD/ADR entry
• Bidirectional/differential data strobe per byte lane
• Programmable READ and WRITE latencies (RL/WL)
• Programmable and on-the-fly burst lengths (BL = 16,
32)
• Directed per-bank refresh for concurrent bank operation and ease of command scheduling
• Up to 8.5 GB/s per die x16 channel
• On-chip temperature sensor to control self refresh
rate
• Partial-array self refresh (PASR)
• Selectable output drive strength (DS)
• Clock-stop capability
• RoHS-compliant, “green” packaging
• Programmable VSS (ODT) termination
E
512M32
1G32
512M64
D1
D2
ZW
FW
NZ
HJ
-046
WT
IT
:B
Table 1: Key Timing Parameters
WRITE Latency
Clock Rate
(MHz)
Data Rate
per Pin
(Mb/s)
Array
Configuration
Set A
-046
2133
4266
512 Meg x 32
-046
2133
4266
-046
2133
4266
Speed
Grade
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
READ Latency
Set B
DBI
Disabled
DBI
Enabled
18
34
36
40
1G x 32
18
34
36
40
512 Meg x 64
18
34
36
40
1
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Products and specifications discussed herein are subject to change by Micron without notice.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
Part Number Ordering Information
Part Number Ordering Information
Figure 1: Part Number Chart
MT
53
E
512M32 D1
ZW -046
WT
Micron Technology
:B
Design Revision
:B
Product Family
53 = Mobile LPDDR4 SDRAM
Operating Temperature
Operating Voltage
WT = –25°C to +85°C
IT = –40°C to +95°C
E = 1.10V V DD2 / 0.60V VDDQ or 1.10V VDDQ
Automotive Certification (option)
A = Package-level burn-in
(Blank) = Standard
Configuration
512M32 = 512 Meg x 32
1G32 = 1 Gig x 32
512M64 = 512 Meg x 64
Cycle Time
-046 = 468ps, tCK RL = 36/40
Addressing
Package Codes
D1 = LPDDR4, 1 die
D2 = LPDDR4, 2 die
ZW = 200-ball TFBGA 10 x 14.5 x 1.05mm (Ø0.40 SMD)
FW = 200-ball TFBGA 10 x 14.5 x 1.1mm (Ø0.40 SMD)
NZ = 376-ball WFBGA 14 x 14 x 0.71mm (Ø0.24 SMD)
HJ = 556-ball TFBGA 12.4 x 12.4 x 1.1mm (Ø0.24 SMD)
Table 2: Part Number List
Total Density
Data Rate per Pin
MT53E512M32D1ZW-046 WT:B
Part Number
2GB (16Gb)
4266 Mb/s
MT53E512M32D1ZW-046 IT:B
2GB (16Gb)
4266 Mb/s
MT53E1G32D2FW-046 WT:B
4GB (32Gb)
4266 Mb/s
MT53E512M64D2NZ-046 WT:B
4GB (32Gb)
4266 Mb/s
MT53E512M64D2HJ-046 WT:B
4GB (32Gb)
4266 Mb/s
FBGA Part Marking Decoder
Due to space limitations, FBGA-packaged components have an abbreviated part marking that is different from the
part number. Micron’s FBGA part marking decoder is available at www.micron.com/decoder.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
2
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
Contents
Part Number Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
FBGA Part Marking Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Important Notes and Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Product Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Device Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Refresh Requirement Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Package Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Ball Assignments and Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Ball Descriptions and Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Product Specific Mode Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
IDD Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
IDD Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
General LPDDR4X Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
SDRAM Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Simplified Bus Interface State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Power-Up and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Voltage Ramp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Reset Initialization with Stable Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Power-Off Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Controlled Power-Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Uncontrolled Power-Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Mode Register Assignments and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Commands and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
ACTIVATE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Read and Write Access Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Preamble and Postamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Burst READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
tLZ(DQS), tLZ(DQ), tHZ(DQS), tHZ(DQ) Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
t
LZ(DQS) and tHZ(DQS) Calculation for ATE (Automatic Test Equipment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
tLZ(DQ) and tHZ(DQ) Calculation for ATE (Automatic Test Equipment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Burst WRITE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
tWPRE Calculation for ATE (Automatic Test Equipment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
t
WPST Calculation for ATE (Automatic Test Equipment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
MASK WRITE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Mask Write Timing Constraints for BL16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Data Mask and Data Bus Inversion (DBI [DC]) Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
WRITE and MASKED WRITE Operation DQS Control (WDQS Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
WDQS Control Mode 1 – Read-Based Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
WDQS Control Mode 2 – WDQS_On/Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Preamble and Postamble Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Preamble, Postamble Behavior in READ-to-READ Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
3
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
READ-to-READ Operations – Seamless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
READ-to-READ Operations – Consecutive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
WRITE-to-WRITE Operations – Seamless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
WRITE-to-WRITE Operations – Consecutive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
PRECHARGE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Burst READ Operation Followed by Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Burst WRITE Followed by Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Burst READ With Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Burst WRITE With Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
RAS Lock Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Delay Time From WRITE-to-READ with Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
REFRESH Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Burst READ Operation Followed by Per-Bank Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Refresh Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Refresh Management Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Refresh Management Command Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Refresh Management Operation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
SELF REFRESH Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Self Refresh Entry and Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Power-Down Entry and Exit During Self Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Command Input Timing After Power-Down Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Self Refresh Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
MRR, MRW, MPC Commands During tXSR, tRFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Power-Down Entry and Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Input Clock Stop and Frequency Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Clock Frequency Change – CKE LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Clock Stop – CKE LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Clock Frequency Change – CKE HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Clock Stop – CKE HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
MODE REGISTER READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
MRR After a READ and WRITE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
MRR After Power-Down Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
MODE REGISTER WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Mode Register Write States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
VREF Current Generator (VRCG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
VREF Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
VREF(CA) Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
VREF(DQ) Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Command Bus Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Command Bus Training Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Training Sequence for Single-Rank Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Training Sequence for Multiple-Rank Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Relation Between CA Input Pin and DQ Output Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Write Leveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Mode Register Write-WR Leveling Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Write Leveling Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Input Clock Frequency Stop and Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
MULTIPURPOSE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Read DQ Calibration Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Read DQ Calibration Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Read DQ Calibration Training Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
4
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
MPC[READ DQ CALIBRATION] After Power-Down Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Write Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Internal Interval Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
DQS Interval Oscillator Matching Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
OSC Count Readout Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Thermal Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
ZQ Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
ZQCAL Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Multichannel Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
ZQ External Resistor, Tolerance, and Capacitive Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Frequency Set Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Frequency Set Point Update Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Pull-Up and Pull-Down Characteristics and Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
On-Die Termination for the Command/Address Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
ODT Mode Register and ODT State Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
ODT Mode Register and ODT Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
ODT for CA Update Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
DQ On-Die Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Output Driver and Termination Register Temperature and Voltage Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
ODT Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Asynchronous ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
DQ ODT During Power-Down and Self Refresh Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
ODT During Write Leveling Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Target Row Refresh Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
TRR Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Post-Package Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Failed Row Address Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Read Preamble Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
AC and DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
AC and DC Input Measurement Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Input Levels for CKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Input Levels for RESET_n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Differential Input Voltage for CK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Peak Voltage Calculation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Single-Ended Input Voltage for Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Differential Input Slew Rate Definition for Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Differential Input Cross-Point Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Differential Input Voltage for DQS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Peak Voltage Calculation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Single-Ended Input Voltage for DQS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Differential Input Slew Rate Definition for DQS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Differential Input Cross-Point Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Input Levels for ODT_CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Output Slew Rate and Overshoot/Undershoot Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Single-Ended Output Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Differential Output Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Overshoot and Undershoot Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Driver Output Timing Reference Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
LVSTL I/O System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Input/Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
5
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
IDD Specification Parameters and Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
IDD Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
AC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
CA Rx Voltage and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
DQ Tx Voltage and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
DRAM Data Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
DQ Rx Voltage and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Clock Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
tCK(abs), tCH(abs), and tCL(abs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Clock Period Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Clock Period Jitter Effects on Core Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Cycle Time Derating for Core Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Clock Cycle Derating for Core Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Clock Jitter Effects on Command/Address Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Clock Jitter Effects on READ Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Clock Jitter Effects on WRITE Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
LPDDR4 1.10V VDDQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Power-Up and Initialization - LPDDR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Mode Register Definition - LPDDR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Burst READ Operation - LPDDR4 ATE Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
tLZ(DQS), tLZ(DQ), tHZ(DQS), tHZ(DQ) Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
t
LZ(DQS) and tHZ(DQS) Calculation for ATE (Automatic Test Equipment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
tLZ(DQ) and tHZ(DQ) Calculation for ATE (Automatic Test Equipment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
VREF Specifications - LPDDR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Internal VREF(CA) Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Internal VREF(DQ) Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Command Definitions and Timing Diagrams - LPDDR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Pull Up/Pull Down Driver Characteristics and Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
On-Die Termination for the Command/Address Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
ODT Mode Register and ODT State Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
ODT Mode Register and ODT Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
DQ On-Die Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Output Driver and Termination Register Temperature and Voltage Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
AC and DC Operating Conditions - LPDDR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Recommended DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Output Slew Rate and Overshoot/Undershoot specifications - LPDDR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Single-Ended Output Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Differential Output Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
LVSTL I/O System - LPDDR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Product Specific Mode Register definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Rev. G – 05/2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Rev. F – 04/2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Rev. E – 02/2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Rev. D – 11/2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Rev. C – 09/2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Rev. B – 05/2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Rev. A – 04/2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
6
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
List of Figures
Figure 1: Part Number Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Figure 2: Single-Die, Dual-Channel Package Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 3: Dual-Die, Dual-Channel Package Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 4: Dual-Die, Quad-Channel Package Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 5: 200-Ball Dual-Channel, Single-Rank Discrete FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 6: 200-Ball Dual-Channel, Dual-Rank Discrete FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 7: 376-Ball Quad-Channel, Single-Rank POP FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 8: 556-Ball Quad-Channel, Single-Rank POP FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 9: 200-Ball TFBGA – 10mm x 14.5mm x 1.05mm (Package Code: ZW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 10: 200-Ball TFBGA – 10mm x 14.5mm x 1.1mm (Package Code: FW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 11: 376-Ball WFBGA – 14.0mm x 14.0mm x 0.71mm (Package Code: NZ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 12: 556-Ball TFBGA – 12.4mm x 12.4mm x 1.1mm (Package Code: HJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 13: Simplified State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 14: Simplified State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 15: Voltage Ramp and Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 16: ACTIVATE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 17: tFAW Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 18: DQS Read Preamble and Postamble – Toggling Preamble and 0.5nCK Postamble . . . . . . . . . . . . . . . . . . . 79
Figure 19: DQS Read Preamble and Postamble – Static Preamble and 1.5nCK Postamble . . . . . . . . . . . . . . . . . . . . . . 79
Figure 20: DQS Write Preamble and Postamble – 0.5nCK Postamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 21: DQS Write Preamble and Postamble – 1.5nCK Postamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 22: Burst Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 23: Burst Read Followed by Burst Write or Burst Mask Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 24: Seamless Burst Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 25: Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 26: tLZ(DQS) Method for Calculating Transitions and Endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 27: tHZ(DQS) Method for Calculating Transitions and Endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 28: tLZ(DQ) Method for Calculating Transitions and Endpoint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 29: tHZ(DQ) Method for Calculating Transitions and Endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 30: Burst WRITE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 31: Burst Write Followed by Burst Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 32: Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 33: Method for Calculating tWPRE Transitions and Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 34: Method for Calculating tWPST Transitions and Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 35: MASK WRITE Command – Same Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 36: MASK WRITE Command – Different Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 37: MASKED WRITE Command with Write DBI Enabled; DM Enabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 38: WRITE Command with Write DBI Enabled; DM Disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 39: WDQS Control Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 40: Burst WRITE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 41: Burst READ Followed by Burst WRITE or Burst MASKED WRITE (ODT Disable) . . . . . . . . . . . . . . . . . . . . 103
Figure 42: Burst READ Followed by Burst WRITE or Burst MASKED WRITE (ODT Enable) . . . . . . . . . . . . . . . . . . . . 103
Figure 43: READ Operations: tCCD = MIN, Preamble = Toggle, 1.5nCK Postamble. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 44: Seamless READ: tCCD = MIN + 1, Preamble = Toggle, 1.5nCK Postamble . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 45: Consecutive READ: tCCD = MIN + 1, Preamble = Toggle, 0.5nCK Postamble . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 46: Consecutive READ: tCCD = MIN + 1, Preamble = Static, 1.5nCK Postamble . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 47: Consecutive READ: tCCD = MIN + 1, Preamble = Static, 0.5nCK Postamble . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 48: Consecutive READ: tCCD = MIN + 2, Preamble = Toggle, 1.5nCK Postamble . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 49: Consecutive READ: tCCD = MIN + 2, Preamble = Toggle, 0.5nCK Postamble . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 50: Consecutive READ: tCCD = MIN + 2, Preamble = Static, 1.5nCK Postamble . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 51: Consecutive READ: tCCD = MIN + 2, Preamble = Static, 0.5nCK Postamble . . . . . . . . . . . . . . . . . . . . . . . . 108
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
7
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
Figure 52: Consecutive READ: tCCD = MIN + 3, Preamble = Toggle, 1.5nCK Postamble . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 53: Consecutive READ: tCCD = MIN + 3, Preamble = Toggle, 0.5nCK Postamble . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 54: Consecutive READ: tCCD = MIN + 3, Preamble = Static, 1.5nCK Postamble . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 55: Consecutive READ: tCCD = MIN + 3, Preamble = Static, 0.5nCK Postamble . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 56: Seamless WRITE: tCCD = MIN, 0.5nCK Postamble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 57: Seamless WRITE: tCCD = MIN, 1.5nCK Postamble, 533 MHz < Clock Frequency )
Upper
Frequency
Limit(≤)
Units
Notes
6
6
4
4
6
8
10
266
MHz
1–6
10
12
6
8
10
8
266
533
14
16
8
12
16
8
533
800
20
22
10
18
20
8
800
1066
24
28
12
22
24
10
1066
1333
28
32
14
26
30
12
1333
1600
32
36
16
30
34
14
1600
1866
36
40
18
34
40
16
1866
2133
Notes: 1. The device should not be operated at a frequency above the upper frequency limit or below the lower frequency
limit shown for each RL, WL, or nWR value.
2. DBI for READ operations is enabled in MR3 OP[6]. When MR3 OP[6] = 0, then the "No DBI" column should be used
for READ latency. When MR3 OP[6] = 1, then the "w/DBI" column should be used for READ latency.
3. WRITE latency set A and set B are determined by MR2 OP[6]. When MR2 OP[6] = 0, then WRITE latency set A should
be used. When MR2 OP[6] = 1, then WRITE latency set B should be used.
4. The programmed value for nRTP is the number of clock cycles the device uses to determine the starting point of
an internal PRECHARGE operation after a READ burst with AP (auto precharge) enabled . It is determined by
RU(tRTP/tCK).
5. The programmed value of nWR is the number of clock cycles the device uses to determine the starting point of an
internal PRECHARGE operation after a WRITE burst with AP (auto precharge) enabled. It is determined by
RU(tWR/tCK).
6. nRTP shown in this table is valid for BL16 only. For BL32, the device will add 8 clocks to the nRTP value before
starting a precharge.
Table 30: MR3 I/O Configuration 1 (MA[5:0] = 03h)
OP7
OP6
DBI-WR
DBI-RD
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
OP5
OP4
OP3
PDDS
56
OP2
OP1
OP0
PPRP
WR-PST
PU-CAL
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 31: MR3 Op-Code Bit Definitions
Feature
PU-CAL
(Pull-up calibration point)
Type
OP
Write-only
OP[0]
WR-PST
(WR postamble length)
OP[1]
PPRP
(Post-package repair protection)
OP[2]
PDDS
(Pull-down drive strength)
OP[5:3]
Definition
Notes
0b: VDDQ × 0.6
1–4
1b: VDDQ × 0.5 (default)
0b: WR postamble = 0.5 × tCK (default)
1b: WR postamble = 1.5 × tCK
0b: PPR protection disabled (default)
2, 3, 5
6
1b: PPR protection enabled
000b: RFU
1, 2, 3
001b: RZQ/1
010b: RZQ/2
011b: RZQ/3
100b: RZQ/4
101b: RZQ/5
110b: RZQ/6 (default)
111b: Reserved
DBI-RD
(DBI-read enable)
OP[6]
DBI-WR
(DBI-write enable)
OP[7]
0b: Disabled (default)
2, 3
1b: Enabled
0b: Disabled (default)
2, 3
1b: Enabled
Notes: 1. All values are typical. The actual value after calibration will be within the specified tolerance for a given voltage
and temperature. Recalibration may be required as voltage and temperature vary.
2. There are two physical registers assigned to each bit of this MR parameter: designated set point 0 and set point 1.
Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with
an MRW command to this MR address, or read from with an MRR command to this address.
3. There are two physical registers assigned to each bit of this MR parameter: designated set point 0 and set point
1.The device will operate only according to the values stored in the registers for the active set point, for example,
the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive
set point will be determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive
set point will be ignored by the device, and may be changed without affecting device operation.
4. For dual-channel device, PU-CAL (MR3-OP[0]) must be set the same for both channels on a die. The SDRAM will
read the value of only one register (Ch.A or Ch.B); the choice is vendor-specific, so both channels must be set the
same.
5. 1.5 × tCK apply > 1.6 GHz clock.
6. If MR3 OP[2] is set to 1b, PPR protection mode is enabled. The PPR protection bit is a sticky bit and can only be set
to 0b by a power on reset. MR4 OP[4] controls entry to PPR mode. If PPR protection is enabled then the DRAM will
not allow writing of 1b to MR4 OP[4].
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
57
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 32: MR4 Device Temperature (MA[5:0] = 04h)
OP7
OP6
TUF
OP5
Thermal offset
OP4
OP3
PPRE
SR abort
OP2
OP1
OP0
Refresh rate
Table 33: MR4 Op-Code Bit Definitions
Feature
Refresh rate
Type
OP
Read-only
OP[2:0]
Definition
Notes
000b: SDRAM low temperature operating limit
exceeded
1–4,
7–9
001b: 4x refresh
010b: 2x refresh
011b: 1x refresh (default)
100b: 0.5x refresh
101b: 0.25x refresh, no derating
110b: 0.25x refresh, with derating
111b: SDRAM high temperature operating limit
exceeded
SR abort
(Self refresh abort)
Write
PPRE
(Post-package repair
entry/exit)
Write
Thermal offset-controller
offset to TCSR
Write
OP[3]
0b: Disable (default)
9
1b: Device dependent
OP[4]
0b: Exit PPR mode (default)
5, 9
1b: Enter PPR mode (Reference MR25 OP[7:0] for
available PPR resources)
OP[6:5]
00b: No offset, 0–5°C gradient (default)
9
01b: 5°C offset, 5–10°C gradient
10b: 10°C offset, 10–15°C gradient
11b: Reserved
TUF
(Temperature update flag)
Read-only
OP7
0b: OP[2:0] No change in OP[2:0] since last MR4 read
(default)
6–8
1b: Change in OP[2:0] since last MR4 read
Notes: 1. The refresh rate for each MR4 OP[2:0] setting applies to tREFI, tREFIpb, and tREFW. MR4 OP[2:0] = 011b corresponds
to a device temperature of 85°C. Other values require either a longer (2x, 4x) refresh interval at lower temperatures or a shorter (0.5x, 0.25x) refresh interval at higher temperatures. If MR4 OP[2] = 1b, the device temperature
is greater than 85°C.
2. At higher temperatures (>85°C), AC timing derating may be required. If derating is required the device will set MR4
OP[2:0] = 110b. See derating timing requirements in the AC Timing section.
3. DRAM vendors may or may not report all of the possible settings over the operating temperature range of the
device. Each vendor guarantees that their device will work at any temperature within the range using the refresh
interval requested by their device.
4. The device may not operate properly when MR4 OP[2:0] = 000b or 111b.
5. Post-package repair can be entered or exited by writing to MR4 OP[4].
6. When MR4 OP[7] = 1b, the refresh rate reported in MR4 OP[2:0] has changed since the last MR4 read. A mode
register read from MR4 will reset MR4 OP[7] to 0b.
7. MR4 OP[7] = 0b at power-up. MR4 OP[2:0] bits are valid after initialization sequence (Te).
8. See the Temperature Sensor section for information on the recommended frequency of reading MR4.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
58
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
9. MR4 OP[6:3] can be written in this register. All other bits will be ignored by the device during an MRW command
to this register.
Table 34: MR5 Basic Configuration 1 (MA[5:0] = 05h)
OP7
OP6
OP5
OP4
OP3
OP2
OP1
OP0
OP2
OP1
OP0
OP2
OP1
OP0
Manufacturer ID
Table 35: MR5 Op-Code Bit Definitions
Feature
Manufacturer ID
Type
OP
Read-only
OP[7:0]
Definition
1111 1111b: Micron
All others: Reserved
Table 36: MR6 Basic Configuration 2 (MA[5:0] = 06h)
OP7
OP6
OP5
OP4
OP3
Revision ID1
Note: 1. MR6 is vendor-specific.
Table 37: MR6 Op-Code Bit Definitions
Feature
Revision ID1
Type
OP
Read-only
OP[7:0]
Definition
xxxx xxxxb: Revision ID1
Note: 1. MR6 is vendor-specific.
Table 38: MR7 Basic Configuration 3 (MA[5:0] = 07h)
OP7
OP6
OP5
OP4
OP3
Revision ID2
Table 39: MR7 Op-Code Bit Definitions
Feature
Revision ID2
Type
OP
Read-only
OP[7:0]
Definition
xxxx xxxxb: Revision ID2
Note: 1. MR7 is vendor-specific.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
59
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 40: MR8 Basic Configuration 4 (MA[5:0] = 08h)
OP7
OP6
OP5
OP4
I/O width
OP3
OP2
OP1
Density
OP0
Type
Table 41: MR8 Op-Code Bit Definitions
Feature
Type
Type
OP
Read-only
OP[1:0]
Definition
00b: S16 SDRAM (16n prefetch)
All others: Reserved
Density
Read-only
OP[5:2]
0000b: 4Gb dual-channel die/2Gb single-channel die
0001b: 6Gb dual-channel die/3Gb single-channel die
0010b: 8Gb dual-channel die/4Gb single-channel die
0011b: 12Gb dual-channel die/6Gb single-channel die
0100b: 16Gb dual-channel die/8Gb single-channel die
0101b: 24Gb dual-channel die/12Gb single-channel die
0110b: 32Gb dual-channel die/16Gb single-channel die
1100b: 2Gb dual-channel die/1Gb single-channel die
All others: Reserved
I/O width
Read-only
OP[7:6]
00b: x16/channel
01b: x8/channel
All others: Reserved
Table 42: MR9 Test Mode (MA[5:0] = 09h)
OP7
OP6
OP5
OP4
OP3
OP2
OP1
OP0
Vendor-specific test mode
Table 43: MR9 Op-Code Definitions
Feature
Test mode
Type
OP
Write-only
OP[7:0]
Definition
0000000b; Vendor-specific test mode disabled (default)
Table 44: MR10 Calibration (MA[5:0] = 0Ah)
OP7
OP6
OP5
OP4
OP3
OP2
RFU
OP1
OP0
ZQ RESET
Table 45: MR10 Op-Code Bit Definitions
Feature
Type
OP
ZQ reset
Write-only
OP[0]
Definition
0b: Normal operation (default)
1b: ZQ reset
Notes: 1. See AC Timing table for calibration latency and timing.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
60
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
2. If ZQ is connected to VDDQ through RZQ, either the ZQ CALIBRATION function or default calibration (via ZQ reset)
is supported. If ZQ is connected to VSS, the device operates with default calibration and ZQ CALIBRATION
commands are ignored. In both cases, the ZQ connection must not change after power is supplied to the device.
Table 46: MR11 ODT Control (MA[5:0] = 0Bh)
OP7
OP6
OP5
RFU
OP4
OP3
CA ODT
OP2
RFU
OP1
OP0
DQ ODT
Table 47: MR11 Op-Code Bit Definitions
Feature
DQ ODT
DQ bus receiver on-die termination
Type
OP
Write-only
OP[2:0]
Definition
Notes
000b: Disable (default)
1, 2, 3
001b: RZQ/1
010b: RZQ/2
011b: RZQ/3
100b: RZQ/4
101b: RZQ/5
110b: RZQ/6
111b: RFU
CA ODT
CA bus receiver on-die termination
Write-only
OP[6:4]
000b: Disable (default)
1, 2, 3
001b: RZQ/1
010b: RZQ/2
011b: RZQ/3
100b: RZQ/4
101b: RZQ/5
110b: RZQ/6
111b: RFU
Notes: 1. All values are typical. The actual value after calibration will be within the specified tolerance for a given voltage
and temperature. Re-calibration may be required as voltage and temperature vary.
2. There are two physical registers assigned to each bit of this MR parameter: designated set point 0 and set point 1.
Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with
an MRW command to this MR address, or read from with an MRR command to this address.
3. There are two physical registers assigned to each bit of this MR parameter: designated set point 0 and set point 1.
The device will operate only according to the values stored in the registers for the active set point, for example,
the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive
set point will be ignored by the device and may be changed without affecting device operation.
Table 48: MR12 Register Information (MA[5:0] = 0Ch)
OP7
OP6
RFU
VRCA
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
OP5
OP4
OP3
OP2
OP1
OP0
VREF(CA)
61
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 49: MR12 Op-Code Bit Definitions
Feature
Type
OP
Data
VREF(CA)
VREF(CA) settings
Read/Write
OP[5:0]
VRCA
VREF(CA) range
Read/Write
Notes
000000b–110010b: See VREF Settings table
1–3, 5, 6
All others: Reserved
OP[6]
0b: VREF(CA) range[0] enabled
1, 2, 4, 5, 6
1b: VREF(CA) range[1] enabled (default)
Notes: 1. This register controls the VREF(CA) levels for frequency set point[1:0]. Values from either VR(ca)[0] or VR(ca)[1] may
be selected by setting MR12 OP[6] appropriately.
2. A read to MR12 places the contents of OP[7:0] on DQ[7:0]. Any RFU bits and unused DQ will be set to 0. See the
MRR Operation section.
3. A write to MR12 OP[5:0] sets the internal VREF(CA) level for FSP[0] when MR13 OP[6] = 0b or sets the internal VREF(CA)
level for FSP[1] when MR13 OP[6] = 1b. The time required for VREF(CA) to reach the set level depends on the step
size from the current level to the new level. See the VREF(CA) training section.
4. A write to MR12 OP[6] switches the device between two internal VREF(CA) ranges. The range (range[0] or range[1])
must be selected when setting the VREF(CA) register. The value, once set, will be retained until overwritten or until
the next power-on or reset event.
5. There are two physical registers assigned to each bit of this MR parameter: designated set point 0 and set point 1.
Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with
an MRW command to this MR address, or read from with an MRR command to this address.
6. There are two physical registers assigned to each bit of this MR parameter: designated set point 0 and set point 1.
The device will operate only according to the values stored in the registers for the active set point, for example,
the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive
set point will be ignored by the device, and may be changed without affecting device operation.
Table 50: MR13 Register Control (MA[5:0] = 0Dh)
OP[7]
OP[6]
OP[5]
OP[4]
OP[3]
OP[2]
OP[1]
OP[0]
FSP-OP
FSP-WR
DMD
RRO
VRCG
VRO
RPT
CBT
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
62
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 51: MR13 Op-Code Bit Definition
Feature
CBT
Command bus training
Type
OP
Write-only
OP[0]
Definition
Notes
0b: Normal operation (default)
1
1b: Command bus training mode enabled
RPT
Read preamble training
OP[1]
VRO
VREF output
OP[2]
VRCG
VREF current generator
OP[3]
RRO
Refresh rate option
OP[4]
DMD
Data mask disable
OP[5]
FSP-WR
Frequency set point
write/read
OP[6]
FSP-OP
FREQUENCY SET POINT
operation mode
OP[7]
0b: Disabled (default)
1b: Read preamble training mode enabled
0b: Normal operation (default)
2
1b: Output the VREF(CA) and VREF(DQ) values on DQ bits
0b: Normal operation (default)
3
1b: Fast response (high current) mode
0b: Disable codes 001 and 010 in MR4 OP[2:0]
4, 5
1b: Enable all codes in MR4 OP[2:0]
0b: DATA MASK operation enabled (default)
6
1b: DATA MASK operation disabled
0b: Frequency set point[0] (default)
7
1b: Frequency set point[1]
0b: Frequency set point[0] (default)
8
1b: Frequency set point[1]
Notes: 1. A write to set OP[0] = 1 causes the LPDDR4 SDRAM to enter the command bus training mode. When OP[0] = 1 and
CKE goes LOW, commands are ignored and the contents of CA[5:0] are mapped to the DQ bus. CKE must be
brought HIGH before doing a MRW to clear this bit (OP[0] = 0) and return to normal operation. See the Command
Bus Training section for more information.
2. When set, the device will output the VREF(CA) and VREF(DQ) voltage on DQ pins. Only the "active" frequency set
point, as defined by MR13 OP[7], will be output on the DQ pins. This function allows an external test system to
measure the internal V REF levels. The DQ pins used for VREF output are vendor-specific.
3. When OP[3] = 1, the VREF circuit uses a high current mode to improve VREF settling time.
4. MR13 OP[4] RRO bit is valid only when MR0 OP[0] = 1. For LPDDR4 SDRAM with MR0 OP[0] = 0, MR4 OP[2:0] bits
are not dependent on MR13 OP[4].
5. When OP[4] = 0, only 001b and 010b in MR4 OP[2:0] are disabled. LPDDR4 SDRAM must report 011b instead of
001b or 010b in this case. Controller should follow the refresh mode reported by MR4 OP[2:0], regardless of RRO
setting. TCSR function does not depend on RRO setting.
6. When enabled (OP[5] = 0b) data masking is enabled for the device. When disabled (OP[5] = 1b), the device will
ignore any mask patterns issued during a MASKED WRITE command. See the Data Mask section for more information.
7. FSP-WR determines which frequency set point registers are accessed with MRW and MRR commands for the
following functions such as VREF(CA) setting, VREF(CA) range, VREF(DQ) setting, VREF(DQ) range. For more information,
refer to Frequency Set Point section.
8. FSP-OP determines which frequency set point register values are currently used to specify device operation for the
following functions such as V REF(CA) setting, VREF(CA) range, VREF(DQ) setting, VREF(DQ) range. For more information,
refer to Frequency Set Point section.
Table 52: Mode Register 14 (MA[5:0] = 0Eh)
OP[7]
OP[6]
RFU
VRDQ
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
OP[5]
OP[4]
OP[3]
OP[2]
OP[1]
OP[0]
VREF(DQ)
63
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 53: MR14 Op-Code Bit Definition
Feature
VREF(DQ)
VREF(DQ) setting
Type
OP
Read/Write
OP[5:0]
VRDQ
VREF(DQ) range
Definition
Notes
000000b–110010b: See VREF Settings table
1–3, 5, 6
All others: Reserved
OP[6]
0b: VREF(DQ) range[0] enabled
1, 2, 4–6
1b: VREF(DQ) range[1] enabled (default)
Notes: 1. This register controls the VREF(DQ) levels for frequency set point[1:0]. Values from either VRDQ[0] (vendor defined)
or VRDQ[1] (vendor defined) may be selected by setting OP[6] appropriately.
2. A read (MRR) to this register places the contents of OP[7:0] on DQ[7:0]. Any RFU bits and unused DQ shall be set
to 0. See the MRR Operation section.
3. A write to OP[5:0] sets the internal VREF(DQ) level for FSP[0] when MR13 OP[6] = 0b, or sets FSP[1] when MR13 OP[6]
= 1b. The time required for VREF(DQ) to reach the set level depends on the step size from the current level to the
new level. See the VREF(DQ) training section.
4. A write to OP[6] switches the device between two internal VREF(DQ) ranges. The range (range[0] or range[1]) must
be selected when setting the VREF(DQ) register. The value, once set, will be retained until overwritten, or until the
next power-on or reset event.
5. There are two physical registers assigned to each bit of this MR parameter: designated set point 0 and set point 1.
Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with
an MRW command to this MR address, or read from with an MRR command to this address.
6. There are two physical registers assigned to each bit of this MR parameter: designated set point 0 and set point 1.
The device will operate only according to the values stored in the registers for the active set point, for example,
the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive
set point will be ignored by the device, and may be changed without affecting device operation.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
64
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 54: VREF Setting for Range[0] and Range[1]
Function
OP
Range[0] Values
Range[1] Values
VREF(CA) (% of VDDQ)
VREF(DQ) (% of VDDQ)
VREF setting
for MR12
and MR14
OP[5:0]
VREF(CA) (% of VDDQ)
VREF(DQ) (% of VDDQ)
000000b: 15.0%
011010b: 30.5%
000000b: 32.9%
011010b: 48.5%
000001b: 15.6%
011011b: 31.1%
000001b: 33.5%
011011b: 49.1%
000010b: 16.2%
011100b: 31.7%
000010b: 34.1%
011100b: 49.7%
000011b: 16.8%
011101b: 32.3%
000011b: 34.7%
011101b: 50.3% (default)
000100b: 17.4%
011110b: 32.9%
000100b: 35.3%
011110b: 50.9%
000101b: 18.0%
011111b: 33.5%
000101b: 35.9%
011111b: 51.5%
000110b: 18.6%
100000b: 34.1%
000110b: 36.5%
100000b: 52.1%
000111b: 19.2%
100001b: 34.7%
000111b: 37.1%
100001b: 52.7%
001000b: 19.8%
100010b: 35.3%
001000b: 37.7%
100010b: 53.3%
001001b: 20.4%
100011b: 35.9%
001001b: 38.3%
100011b: 53.9%
001010b: 21.0%
100100b: 36.5%
001010b: 38.9%
100100b: 54.5%
001011b: 21.6%
100101b: 37.1%
001011b: 39.5%
100101b: 55.1%
001100b: 22.2%
100110b: 37.7%
001100b: 40.1%
100110b: 55.7%
001101b: 22.8%
100111b: 38.3%
001101b: 40.7%
100111b: 56.3%
001110b: 23.4%
101000b: 38.9%
001110b: 41.3%
101000b: 56.9%
001111b: 24.0%
101001b: 39.5%
001111b: 41.9%
101001b: 57.5%
010000b: 24.6%
101010b: 40.1%
010000b: 42.5%
101010b: 58.1%
010001b: 25.1%
101011b: 40.7%
010001b: 43.1%
101011b: 58.7%
010010b: 25.7%
101100b: 41.3%
010010b: 43.7%
101100b: 59.3%
010011b: 26.3%
101101b: 41.9%
010011b: 44.3%
101101b: 59.9%
010100b: 26.9%
101110b: 42.5%
010100b: 44.9%
101110b: 60.5%
010101b: 27.5%
101111b: 43.1%
010101b: 45.5%
101111b: 61.1%
010110b: 28.1%
110000b: 43.7%
010110b: 46.1%
110000b: 61.7%
010111b: 28.7%
110001b: 44.3%
010111b: 46.7%
110001b: 62.3%
011000b: 29.3%
110010b: 44.9%
011000b: 47.3%
110010b: 62.9%
011001b: 29.9%
All others: Reserved
011001b: 47.9%
All others: Reserved
Notes: 1. These values may be used for MR14 OP[5:0] and MR12 OP[5:0] to set the VREF(CA) or VREF(DQ) levels in the device.
2. The range may be selected in each of the MR14 or MR12 registers by setting OP[6] appropriately.
3. Each of the MR14 or MR12 registers represents either FSP[0] or FSP[1]. Two frequency set points each for CA and
DQ are provided to allow for faster switching between terminated and unterminated operation or between
different high-frequency settings, which may use different terminations values.
4. Notes 1–3 apply to entire table.
Table 55: MR15 Register Information (MA[5:0] = 0Fh)
OP[7]
OP[6]
OP[5]
OP[4]
OP[3]
OP[2]
OP[1]
OP[0]
Lower-byte invert register for DQ calibration
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
65
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 56: MR15 Op-code Bit Definition
Feature
Lower-byte invert for DQ
calibration
Type
OP
Definition
Write-only
OP[7:0]
Notes
The following values may be written for any operand
OP[7:0] and will be applied to the corresponding DQ
locations DQ[7:0] within a byte lane
1–3
0b: Do not invert
1b: Invert the DQ calibration patterns in MR32 and
MR40
Default value for OP[7:0] = 55h
Notes: 1. This register will invert the DQ calibration pattern found in MR32 and MR40 for any single DQ or any combination
of DQ. Example: If MR15 OP[7:0] = 00010101b, then the DQ calibration patterns transmitted on DQ[7, 6, 5, 3, 1]
will not be inverted, but the DQ calibration patterns transmitted on DQ[4, 2, 0] will be inverted.
2. DM[0] is not inverted and always transmits the "true" data contained in MR32 and MR40.
3. No DATA BUS INVERSION (DBI) function is enacted during read DQ calibration, even if DBI is enabled in MR3-OP[6].
Table 57: MR15 Invert Register Pin Mapping
PIN
DQ0
DQ1
DQ2
DQ3
DMIO
DQ4
DQ5
DQ6
DQ7
MR15
OP0
OP1
OP2
OP3
No invert
OP4
OP5
OP6
OP7
Table 58: MR16 PASR Bank Mask (MA[5:0] = 010h)
OP7
OP6
OP5
OP4
OP3
OP2
OP1
OP0
PASR bank mask
Table 59: MR16 Op-Code Bit Definitions
Feature
Bank[7:0] mask
Type
OP
Write-only
OP[7:0]
Definition
0b: Bank refresh enabled (default)
1b: Bank refresh disabled
OP[n]
Bank Mask
8-Bank SDRAM
0
xxxxxxx1
Bank 0
1
xxxxxx1x
Bank 1
2
xxxxx1xx
Bank 2
3
xxxx1xxx
Bank 3
4
xxx1xxxx
Bank 4
5
xx1xxxxx
Bank 5
6
x1xxxxxx
Bank 6
7
1xxxxxxx
Bank 7
Notes: 1. When a mask bit is asserted (OP[n] = 1), refresh to that bank is disabled.
2. PASR bank masking is on a per-channel basis; the two channels on the die may have different bank masking in
dual-channel devices.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
66
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 60: MR17 PASR Segment Mask (MA[5:0] = 11h)
OP7
OP6
OP5
OP4
OP3
OP2
OP1
OP0
PASR segment mask
Table 61: MR17 PASR Segment Mask Definitions
Feature
Segment[7:0] mask
Type
OP
Definition
Write-only
OP[7:0]
0b: Segment refresh enabled (default)
1b: Segment refresh disabled
Table 62: MR17 PASR Segment Mask
Density (per channel)
1Gb
2Gb
3Gb
4Gb
6Gb
8Gb
12Gb
16Gb
R[12:10]
R[13:11]
R[14:12]
R[14:12]
R[15:13]
R[15:13]
R[16:14]
R[16:14]
110b
Not
allowed
110b
Segm
ent
OP
Segment
Mask
0
0
XXXXXXX1
000b
1
1
XXXXXX1X
001b
2
2
XXXXX1XX
010b
3
3
XXXX1XXX
011b
4
4
XXX1XXXX
100b
5
5
XX1XXXXX
101b
6
6
X1XXXXXX
110b
110b
7
7
1XXXXXXX
111b
111b
Not
allowed
110b
111b
Not
allowed
111b
111b
Notes: 1. This table indicates the range of row addresses in each masked segment. "X" is “Don’t Care” for a particular
segment.
2. PASR segment-masking is on a per-channel basis. The two channels on the die may have different segment
masking in dual-channel devices.
3. For 3Gb, 6Gb, and 12Gb density per channel, OP[7:6] must always be LOW (= 00b).
Table 63: MR18 Register Information (MA[5:0] = 12h)
OP7
OP6
OP5
OP4
OP3
OP2
OP1
OP0
DQS oscillator count - LSB
Table 64: MR18 LSB DQS Oscillator Count
Function
Type
DQS oscillator count
Read-only
(WR training DQS oscillator)
OP
OP[7:0]
Definition
0h–FFh LSB DRAM DQS oscillator count
Notes: 1. MR18 reports the LSB bits of the DRAM DQS oscillator count. The DRAM DQS oscillator count value is used to train
DQS to the DQ data valid window. The value reported by the DRAM in this mode register can be used by the
memory controller to periodically adjust the phase of DQS relative to DQ.
2. Both MR18 and MR19 must be read (MRR) and combined to get the value of the DQS oscillator count.
3. The value in this register is reset each time an MPC command is issued to start in the DQS oscillator counter.
4. Notes 1–3 apply to entire table.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
67
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 65: MR19 Register Information (MA[5:0] = 13h)
OP7
OP6
OP5
OP4
OP3
OP2
OP1
OP0
DQS oscillator count – MSB
Table 66: MR19 DQS Oscillator Count
Function
DQS oscillator count – MSB
(WR training DQS oscillator)
Type
OP
Read-only
OP[7:0]
Definition
0h–FFh MSB DRAM DQS oscillator count
Notes: 1. MR19 reports the MSB bits of the DRAM DQS oscillator count. The DRAM DQS oscillator count value is used to train
DQS to the DQ data valid window. The value reported by the DRAM in this mode register can be used by the
memory controller to periodically adjust the phase of DQS relative to DQ.
2. Both MR18 and MR19 must be read (MRR) and combined to get the value of the DQS oscillator count.
3. A new MPC[START DQS OSCILLATOR] should be issued to reset the contents of MR18/MR19.
4. Notes 1–3 apply to the entire table.
Table 67: MR20 Register Information (MA[5:0] = 14h)
OP7
OP6
OP5
OP4
OP3
OP2
OP1
OP0
Upper-byte invert register for DQ calibration
Table 68: MR20 Register Information
Function
Upper-byte invert for DQ
calibration
Type
OP
Write-only
OP[7:0]
Definition
The following values may be written for any operand OP[7:0] and
will be applied to the corresponding DQ locations DQ[15:8] within a
byte lane
0b: Do not invert
1b: Invert the DQ calibration patterns in MR32 and MR40
Default value for OP[7:0] = 55h
Notes: 1. This register will invert the DQ calibration pattern found in MR32 and MR40 for any single DQ or any combination
of DQ. For example, if MR20 OP[7:0] = 00010101b, the DQ calibration patterns transmitted on DQ[15, 14, 13, 11,
9] will not be inverted, but the DQ calibration patterns transmitted on DQ[12, 10, 8] will be inverted.
2. DM[1] is not inverted and always transmits the true data contained in MR32 and MR40.
3. No DATA BUS INVERSION (DBI) function is enacted during read DQ calibration, even if DBI is enabled in MR3 OP[6].
4. Notes 1–3 apply to entire table.
Table 69: MR20 Invert Register Pin Mapping
Pin
DQ8
DQ9
DQ10
DQ11
DMI1
DQ12
DQ13
DQ14
DQ15
MR20
OP0
OP1
OP2
OP3
No invert
OP4
OP5
OP6
OP7
Table 70: MR21 Register Information (MA[5:0] = 15h)
OP7
OP6
OP5
OP4
OP3
OP2
OP1
OP0
RFU
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
68
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 71: MR22 Register Information (MA[5:0] = 16h)
OP7
OP6
ODTD for x8_2ch
OP5
OP4
OP3
ODTD-CA
ODTE-CS
ODTE-CK
OP2
OP1
OP0
SOC ODT
Table 72: MR22 Register Information
Function
SOC ODT (controller ODT
value for VOH calibration)
Type
OP
Write-only
OP[2:0]
Data
Notes
000b: Disable (default)
1, 2, 3
001b: RZQ/1 (Illegal if MR3 OP[0] = 0b)
010b: RZQ/2
011b: RZQ/3 (Illegal if MR3 OP[0] = 0b)
100b: RZQ/4
101b: RZQ/5 (Illegal if MR3 OP[0] = 0b)
110b: RZQ/6 (Illegal if MR3 OP[0] = 0b)
111b: RFU
ODTE-CK (CK ODT enabled
for non-terminating rank)
Write-only
OP[3]
ODT bond PAD is ignored
2, 3
0b: ODT-CK enable (default)
1b: ODT-CK disable
ODTE-CS (CS ODT enabled
for non-terminating rank)
Write-only
OP[4]
ODT bond PAD is ignored
2, 3
0b: ODT-CS enable (default)
1b: ODT-CS disable
ODTD-CA (CA ODT termina- Write-only
tion disable)
OP[5]
ODT bond PAD is ignored
2, 3
0b: CA ODT enable (default)
1b: CA ODT disable
ODTD for x8_2ch (Byte)
mode
Write-only
OP[7:6]
See Byte Mode section
Notes: 1. All values are typical.
2. There are two physical registers assigned to each bit of this MR parameter: designated set point 0 and set point 1.
Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with
an MRW command to this MR address, or read from with an MRR command to this address.
3. There are two physical registers assigned to each bit of this MR parameter: designated set point 0 and set point 1.
The device will operate only according to the values stored in the registers for the active set point, for example,
the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive
set point will be ignored by the device, and may be changed without affecting device operation.
Table 73: MR23 Register Information (MA[5:0] = 17h)
OP7
OP6
OP5
OP4
OP3
OP2
OP1
OP0
DQS interval timer run-time setting
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
69
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 74: MR23 Register Information
Function
Type
OP
DQS interval timer run-time Write-only
OP[7:0]
Data
00000000b: Disabled (default)
00000001b: DQS timer stops automatically at the 16th clock after
timer start
00000010b: DQS timer stops automatically at the 32nd clock after
timer start
00000011b: DQS timer stops automatically at the 48th clock after
timer start
00000100b: DQS timer stops automatically at the 64th clock after
timer start
--------- Through --------00111111b: DQS timer stops automatically at the (63 × 16)th clock
after timer start
01XXXXXXb: DQS timer stops automatically at the 2048th clock
after timer start
10XXXXXXb: DQS timer stops automatically at the 4096th clock
after timer start
11XXXXXXb: DQS timer stops automatically at the 8192nd clock
after timer start
Notes: 1. MPC command with OP[6:0] = 1001101b (STOP DQS INTERVAL OSCILLATOR) stops the DQS interval timer in the
case of MR23 OP[7:0] = 00000000b.
2. MPC command with OP[6:0] = 1001101b (STOP DQS INTERVAL OSCILLATOR) is illegal with valid nonzero values in
MR23 OP[7:0].
3. Notes 1–2 apply to entire table.
Table 75: MR24 Register Information (MA[5:0] = 18h) when MR0 OP[2] = 0b
OP7
OP6
TRR mode
OP5
OP4
OP3
TRR mode BAn
OP2
Unlimited
MAC
OP1
OP0
MAC value
Table 76: MR24 Register Information when MR0 OP[2] = 0b
Function
Type
MAC value
Read
OP
Data
Notes
OP[2:0] 000b: Unknown (OP[3] = 0) or unlimited (OP[3] = 1)
1
001b: 700K
010b: 600K
011b: 500K
100b: 400K
101b: 300K
110b: 200K
111b: Reserved
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
70
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 76: MR24 Register Information when MR0 OP[2] = 0b (Continued)
Function
Type
OP
Unlimited MAC
Read
OP[3]
Data
Notes
0b: OP[2:0] defines the MAC value
2
1b: Unlimited MAC value
TRR mode BAn
Write
OP[6:4] 000b: Bank 0
001b: Bank 1
010b: Bank 2
011b: Bank 3
100b: Bank 4
101b: Bank 5
110b: Bank 6
111b: Bank 7
TRR mode
Write
OP[7]
0b: Disabled (default)
1b: Enabled
Notes: 1. OP[2:0] = 000b Unknown means that the device is not tested for tMAC and pass/fail values are unknown. OP[2:0]
= 000b Unlimited means that there is no restriction on the number of activates between refresh windows.
However, specific attempts to by-pass TRR may result in data disturb.
2. When OP[3] = 1b, MR24 OP[2:0] set to 000b.
Table 77: MR24 Register Information (MA[5:0] = 18h) when MR0 OP[2] = 1b
OP7
OP6
OP5
OP4
OP3
RAAMMT
RAAIMT
OP2
OP1
OP0
RFM
Table 78: MR24 Register Information when MR0 OP[2] = 1b
Function
Type
OP
RFM(RFM required)
Read
OP[0]
Data
Notes
0b: RFM not required
1
1b: RFM required
RAAIMT (Rolling
accumulated ACT
initial management
threshold)
Read
OP[5:1] 00000b: Invalid
1
00001b: 8
00010b: 16
.....
11110b: 240
11111b: 248
RAAMMT (Rolling
accumulated ACT
maximum management threshold)
Read
OP[7:6] 00b: 2X
1
01b: 4X
10b: 6X
11b: 8X
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
71
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Note: 1. Vendor programmed.
Table 79: MR25 Register Information (MA[5:0] = 19h)
OP7
OP6
OP5
OP4
OP3
OP2
OP1
OP0
Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0
Table 80: MR25 Register Information
Function
PPR resources
Type
OP
Read-only
OP[7:0]
Data
0b: PPR resource is not available
1b: PPR resource is available
Note: 1. When OP[n] = 0, there is no PPR resource available for that bank. When OP[n] = 1, there is a PPR resource available
for that bank, and PPR can be initiated by the controller.
Table 81: MR26:29 Register Information (MA[5:0] = 1Ah–1Dh)
OP7
OP6
OP5
OP4
OP3
OP2
OP1
OP0
OP2
OP1
OP0
Reserved for future use
Table 82: MR30 Register Information (MA[5:0] = 1Eh)
OP7
OP6
OP5
OP4
OP3
Valid 0 or 1
Table 83: MR30 Register Information
Function
SDRAM will ignore
Type
OP
Write-only
OP[7:0]
Data
Don't care
Note: 1. This register is reserved for testing purposes. The logical data values written to OP[7:0] will have no effect on
SDRAM operation; however, timings need to be observed as for any other MR access command.
Table 84: MR31 Register Information (MA[5:0] = 1Fh)
OP7
OP6
OP5
OP4
OP3
OP2
OP1
OP0
OP2
OP1
OP0
Reserved for future use
Table 85: MR32 Register Information (MA[5:0] = 20h)
OP7
OP6
OP5
OP4
OP3
DQ calibration pattern A (default = 5Ah)
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
72
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 86: MR32 Register Information
Feature
Return DQ calibration pattern MR32 + MR40
Type
OP
Write-only
OP[7:0]
Data
Notes
Xb: An MPC command issued with OP[6:0] = 1000011b
causes the device to return the DQ calibration pattern
contained in this register and (followed by) the contents of MR40. A default pattern 5Ah is loaded at
power-up or reset, or the pattern may be overwritten
with a MRW to this register. The contents of MR15 and
MR20 will invert the MR32/MR40 data pattern for a
given DQ (see MR15/MR20 for more information).
1, 2, 3
Notes: 1. The patterns contained in MR32 and MR40 are transmitted on DQ[15:0] and DMI[1:0] when read DQ calibration is
initiated via an MPC command. The pattern is transmitted serially on each data lane and organized little endian
such that the low-order bit in a byte is transmitted first. If the data pattern is 27H, the first bit transmitted is a 1
followed by 1, 1, 0, 0, 1, 0, and 0. The bit stream will be 00100111.
2. MR15 and MR20 may be used to invert the MR32/MR40 data pattern on the DQ pins. See MR15 and MR20 for more
information. Data is never inverted on the DMI[1:0] pins.
3. The data pattern is not transmitted on the DMI[1:0] pins if DBI-RD is disabled via MR3 OP[6].
4. No DATA BUS INVERSION (DBI) function is enacted during read DQ calibration, even if DBI is enabled in MR3 OP[6].
Table 87: MR33:35 Register Information (MA[5:0] = 21h–23h)
OP7
OP6
OP5
OP4
OP3
OP2
OP1
OP3
OP2
OP1
OP0
Do not use
Table 88: MR36 Register Information (MA[5:0] = 24h)
OP7
OP6
OP5
OP4
RFU
OP0
RAADEC
Table 89: MR36 Register Information
Feature
Type
OP
RAADEC (RAA count multiplier per RFM command)
Read
OP[1:0]
Data
Notes
00b: x1
1
01b: x1.5
10b: x2
11b: RFU
Note: 1. OP[1:0] RAADEC bits are valid only when MR0 OP[2] (RFM support) = 1.
Table 90: MR37:38 Register Information (MA[5:0] = 25h–26h)
OP7
OP6
OP5
OP4
OP3
OP2
OP1
OP0
OP3
OP2
OP1
OP0
Do not use
Table 91: MR39 Register Information (MA[5:0] = 27h)
OP7
OP6
OP5
OP4
Valid 0 or 1
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
73
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 92: MR39 Register Information
Function
SDRAM will ignore
Type
OP
Data
Write-only
OP[7:0]
Don't care
Note: 1. This register is reserved for testing purposes. The logical data values written to OP[7:0] will have no effect on
SDRAM operation; however, timings need to be observed as for any other MR access command.
Table 93: MR40 Register Information (MA[5:0] = 28h)
OP7
OP6
OP5
OP4
OP3
OP2
OP1
OP0
DQ calibration pattern B (default = 3Ch)
Table 94: MR40 Register Information
Function
Return DQ calibration pattern MR32 + MR40
Type
OP
Write-only
OP[7:0]
Data
Notes
Xb: A default pattern 3Ch is loaded at power-up or
reset, or the pattern may be overwritten with a MRW to
this register. See MR32 for more information.
1, 2, 3
Notes: 1. The pattern contained in MR40 is concatenated to the end of MR32 and transmitted on DQ[15:0] and DMI[1:0]
when read DQ calibration is initiated via an MPC command. The pattern is transmitted serially on each data lane
and organized little endian such that the low-order bit in a byte is transmitted first. If the data pattern in MR40 is
27H, the first bit transmitted will be a 1, followed by 1, 1, 0, 0, 1, 0, and 0. The bit stream will be 00100111.
2. MR15 and MR20 may be used to invert the MR32/MR40 data patterns on the DQ pins. See MR15 and MR20 for
more information. Data is never inverted on the DMI[1:0] pins.
3. The data pattern is not transmitted on the DMI[1:0] pins if DBI-RD is disabled via MR3 OP[6].
4. No DATA BUS INVERSION (DBI) function is enacted during read DQ calibration, even if DBI is enabled in MR3 OP[6].
Table 95: MR41:47 Register Information (MA[5:0] = 29h–2Fh)
OP7
OP6
OP5
OP4
OP3
OP2
OP1
OP0
OP2
OP1
OP0
Do not use
Table 96: MR48:63 Register Information (MA[5:0] = 30h–3Fh)
OP7
OP6
OP5
OP4
OP3
Reserved for future use
Commands and Timing
Commands transmitted on the CA bus are encoded into two parts and are latched on two consecutive
rising edges of the clock. This is called 2-tick CA capture because each command requires two clock
edges to latch and decode the entire command.
Truth Tables
Truth tables provide complementary information to the state diagram. They also clarify device
behavior and applicable restrictions when considering the actual state of the banks.
Unspecified operations and timings are illegal. To ensure proper operation after an illegal event, the
device must be either reset by asserting the RESET_n command or powered down and then restarted
using the specified initialization sequence before normal operation can continue.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
74
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
CKE signal has to be held HIGH when the commands listed in the command truth table input.
Table 97: Command Truth Table
SDR CA Pins
Command
CS
CA0
CA1
CA2
CA3
CA4
CA5
MRW-1
H
L
H
H
L
L
OP7
1
L
MA0
MA1
MA2
MA3
MA4
MA5
2
H
L
H
H
L
H
OP6
1
L
OP0
OP1
OP2
OP3
OP4
OP5
2
H
L
H
H
H
L
V
1
L
MA0
MA1
MA2
MA3
MA4
MA5
2
H
L
L
L
H
L
AB
1
L
BA0
BA1
BA2
RFM
V
V
2
H
L
L
L
H
H
V
1
MRW-2
MRR-1
REFRESH
(all/per bank)
ENTER SELF
REFRESH
ACTIVATE-1
ACTIVATE-2
WRITE-1
EXIT SELF
REFRESH
MASK WRITE-1
RFU
L
V
H
L
R12
R13
R14
R15
1
L
BA0
BA1
BA2
R16
R10
R11
2
H
R17
R18
R6
R7
R8
R9
1
L
R0
R1
R2
R3
R4
R5
2
H
L
L
H
L
L
BL
1
L
BA0
BA1
BA2
V
C9
AP
2
H
L
L
H
L
H
V
1
L
V
L
L
H
H
L
BL
1
L
BA0
BA1
BA2
V
C9
AP
2
H
L
L
H
H
H
V
1
H
L
V
H
H
V
V
L
H
L
L
RFU
H
H
L
L
READ-1
2
V
2
1, 2, 3, 4,
14, 15
1, 2
1, 2, 3, 10
1, 10, 13
1, 2, 3, 6,
7, 9
1, 2
1, 2, 3, 5,
6, 7, 9
1, 2
1, 2
1, 2
2
L
H
L
L
L
BL
1
L
BA0
BA1
BA2
V
C9
AP
2
75
1, 2, 12
2
H
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
1, 11
2
V
L
1, 11
2
H
H
Notes
2
H
L
RFU
CK Edge
1, 2, 3, 6,
7, 9
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 97: Command Truth Table (Continued)
SDR CA Pins
Command
CS
CA0
CA1
CA2
CA3
CA4
CA5
CAS-2
(WRITE-2,
MASKED
WRITE-2,
READ-2, MRR-2,
MPC (except
NOP)
H
L
H
L
L
H
C8
1
L
C2
C3
C4
C5
C6
C7
2
PRECHARGE
(all/per bank)
H
L
L
L
L
H
AB
1
L
BA0
BA1
BA2
V
V
V
2
MPC
(TRAIN, NOP)
H
L
L
L
L
L
OP6
1
L
OP0
OP1
OP2
OP3
OP4
OP5
2
DESELECT
L
X
CK Edge
1
Notes
1, 8, 9
1, 2, 3, 4
1, 9
1, 2
Notes: 1. All commands except for DESELECT are two clock cycles and are defined by the current state of CS and CA[5:0] at
the rising edge of the clock. DESELECT command is one clock cycle and is not latched by the device.
2. V = H or L (a defined logic level); X = "Don't Care," in which case CS, CK_t, CK_c, and CA[5:0] can be floated.
3. Bank addresses BA[2:0] determine which bank is to be operated upon.
4. AB HIGH during PRECHARGE or REFRESH commands indicate the command must be applied to all banks, and the
bank addresses are "Don't Care."
5. MASK WRITE-1 command only supports BL16. For MASK WRITE-1 commands, CA5 must be driven LOW on the first
rising clock cycle (R1).
6. AP HIGH during a WRITE-1, MASK WRITE-1, or READ-1 command indicates that an auto precharge will occur to the
bank the command is operating on. AP LOW indicates that no auto precharge will occur and the bank will remain
open upon completion of the command.
7. When enabled in the mode register, BL HIGH during a WRITE-1, MASK-WRITE-1, or READ-1 command indicates the
burst length should be set on-the-fly to BL = 32; BL LOW during one of these commands indicates the burst length
should be set on-the-fly to BL = 16. If on-the-fly burst length is not enabled in the mode register, this bit should be
driven to a valid level and is ignored by the device.
8. For CAS-2 commands (WRITE-2, MASK WRITE-2, READ-2, MRR-2, or MPC (only WRITE-FIFO, READ-FIFO, and READ
DQ CALIBRATION)), C[1:0] are not transmitted on the CA [5:0] bus and are assumed to be zero. Note that for CAS-2
WRITE-2 or CAS-2 MASK WRITE-2 command, C[3:2] must be driven LOW.
9. WRITE-1, MASK-WRITE-1, READ-1, MODE REGISTER READ-1, or MPC (only WRITE-FIFO, READ-FIFO, and READ DQ
CALIBRATION) command must be immediately followed by CAS-2 command consecutively without any other
command in between. WRITE-1, MASK WRITE-1, READ-1, MRR-1, or MPC (only WRITE-FIFO, READ-FIFO, and READ
DQ CALIBRATION) command must be issued first before issuing CAS-2 command. MPC (only START and STOP DQS
OSCILLATOR, ZQCAL START and LATCH) commands do not require CAS-2 command; they require two additional
DES or NOP commands consecutively before issuing any other commands.
10. The ACTIVATE-1 command must be followed by the ACTIVATE-2 command consecutively without any other
command between them. The ACTIVATE-1 command must be issued prior to the ACTIVATE-2 command. When the
ACTIVATE-1 command is issued, the ACTIVATE-2 command must be issued before issuing another ACTIVATE-1
command.
11. The MRW-1 command must be followed by the MRW-2 command consecutively without any other command
between them. The MRW-1 command must be issued prior to the MRW-2 command.
12. The MRR-1 command must be followed by the CAS-2 command consecutively without any other commands
between them. The MRR-1 command must be issued prior to the CAS-2 command.
13. For device densities not requiring R17 and R18, R17 and R18 must both be driven High for every ACT-2 command
to maintain backward compatibility.
14. CA3 R2 edge is V when RFM is not required, but becomes RFM when read-only MR24 OP[0] = 1b.
15. Issuing the RFMpb or RFMab command allows the device to use the command period for additional refresh
management.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
76
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
16. Commands are transmitted to the device across a six-lane interface and use CK, CKE, and CS to control the capture
of transmitted data. This is applies to entire table.
ACTIVATE Command
The ACTIVATE command must be executed before a READ or WRITE command can be issued. The
ACTIVATE command is issued in two parts: The bank and upper-row addresses are entered with activate-1 and the lower-row addresses are entered with ACTIVATE-2. ACTIVATE-1 and ACTIVATE-2 are
executed by strobing CS HIGH while setting CA[5:0] at valid levels (see Command table) at the rising
edge of CK.
The bank addresses (BA[2:0]) are used to select the desired bank. The row addresses (R[15:0]) are used
to determine which row to activate in the selected bank. The ACTIVATE-2 command must be applied
before any READ or WRITE operation can be executed. The device can accept a READ or WRITE
command at time tRCD after the ACTIVATE-2 command is sent. After a bank has been activated, it
must be precharged to close the active row before another ACTIVATE-2 command can be applied to
the same bank. The bank active and precharge times are defined as tRAS and tRP, respectively. The
minimum time interval between successive ACTIVATE-2 commands to the same bank is determined
by the row cycle time of the device (tRC). The minimum time interval between ACTIVATE-2 commands
to different banks is tRRD.
Certain restrictions must be observed for bank ACTIVATE and REFpb operations.
• Four-activate window (tFAW): No more than 4 banks may be activated (or refreshed, in the case of
REFpb) per channel in a rolling tFAW window. Convert to clocks by dividing tFAW[ns] by tCK[ns] and
rounding up to the next integer value. As an example of the rolling window, if RU[(tFAW/tCK)] is 64
clocks, and an ACTIVATE command is issued on clock N, no more than three additional ACTIVATE
commands may be issued between clock N + 1 and N + 63. REFpb also counts as bank activation for
the purposes of tFAW.
• 8-bank per channel, precharge all banks (AB) allowance: tRP for a PRECHARGE ALL BANKS
command for an 8-bank device must equal tRPab, which is greater than tRPpb.
Figure 16: ACTIVATE Command
T0
T1
T2
T3
Ta0
RA
RA
BA0
RA
RA
RA
Ta1
Ta2
Ta3
RA
RA
Tb0
Tb1
Tb2
Tb3
Valid
BA0
CA
CA
Tc0
Tc1
Td0
Td1
Td2
Td3
RA
RA
Td4
Td5
CK_c
CK_t
CKE
CS
CA
RA
BA1
Valid
RA
BA0
RA
BA0
tRP
tRRD
tRCD
Command
ACTIVATE-1
ACTIVATE-2
DES
ACTIVATE-1
ACTIVATE-2
READ1
DES
CAS2
DES
PRECHARGE
per bank
DES
ACTIVATE-1
ACTIVATE-2
DES
DES
tRAS
tRC
Don’t Care
Note: 1. A PRECHARGE command uses tRPab timing for all-bank precharge and tRPpb timing for single-bank precharge. In
this figure, tRP is used to denote either all-bank precharge or a single-bank precharge. tCCD = MIN, 1.5nCK postamble, 533 MHz < clock frequency ≤ 800 MHz, ODT worst timing case.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
77
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Figure 17: tFAW Timing
T0
T1
T2
T3
Ta0
RA
RA
BA0
RA
RA
RA
Ta1
Ta2
Ta3
RA
RA
Tb0
Tb1
Tb2
Tb3
RA
BA2
RA
RA
Tc0
Tc1
Tc2
Tc3
RA
RA
Tc4
Td0
Td1
Td2
Td3
Td4
RA
RA
BA4
RA
RA
CK_c
CK_t
CKE
CS
CA
Command
ACTIVATE-1
ACTIVATE-2
DES
RA
BA1
ACTIVATE-1
ACTIVATE-2
tRRD
RA
DES
ACTIVATE-1
ACTIVATE-2
RA
DES
RA
BA3
ACTIVATE-1
ACTIVATE-2
DES
DES
ACTIVATE-1
ACTIVATE-2
tRRD
tRRD
t FAW
Don’t Care
Note: 1. REFpb may be substituted for one of the ACTIVATE commands for the purposes of tFAW.
Read and Write Access Modes
After a bank has been activated, a READ or WRITE command can be executed. This is accomplished by
asserting CKE asynchronously, with CS and CA[5:0] set to the proper state (see Command Truth Table)
on the rising edge of CK.
The device provides a fast column access operation. A single READ or WRITE command will initiate a
burst READ or WRITE operation, where data is transferred to/from the device on successive clock
cycles. Burst interrupts are not allowed; however, the optimal burst length may be set on-the-fly (see
Command Truth Table).
Preamble and Postamble
The DQS strobe for the device requires a preamble prior to the first latching edge (the rising edge of
DQS_t with data valid), and it requires a postamble after the last latching edge. The preamble and
postamble options are set via MODE REGISTER WRITE commands.
The read preamble is two tCK in length and is either static or has one clock toggle before the first
latching edge. The read preamble option is enabled via MRW to MR1 OP[3] (0 = Static; 1 = Toggle).
The read postamble has a programmable option to extend the postamble by 1nCK (tRPSTE). The
extended postamble option is enabled via MRW to MR1 OP[7] (0 = 0.5nCK; 1 = 1.5nCK).
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
78
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Figure 18: DQS Read Preamble and Postamble – Toggling Preamble and 0.5nCK Postamble
T0
T1
T2
T3
T4
Ta0
Ta1
Tb0
Tb1
Tb2
Tb3
Tb4
Tb5
Tb6
Tc0
Tc1
Tc2
Tc3
Tc4
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
RD-1
CAS-2
tDQSCK
RL
tRPRE
DQS_c
DQS_t
tRPST
tDQSQ
DQ
DMI
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n0
n1
n2
n3
n4
n5
n10 n11 n12 n13 n14 n15
Notes: 1. BL = 16, Preamble = Toggling, Postamble = 0.5nCK.
2. DQS and DQ terminated VSSQ.
3. DQS_t/DQS_c is "Don’t Care" prior to the start of tRPRE. No transition of DQS is implied, as DQS_t/DQS_c can be
HIGH, LOW, or High-Z prior to tRPRE.
Figure 19: DQS Read Preamble and Postamble – Static Preamble and 1.5nCK Postamble
T0
T1
T2
T3
T4
Ta0
Ta1
Tb0
Tb1
Tb2
Tb3
Tb4
Tb5
Tb6
Tc0
Tc1
Tc2
Tc3
Tc4
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
RD-1
CAS-2
RL
tDQSCK
tRPRE
DQS_c
DQS_t
tDQSQ
DQ
DMI
tRPSTE
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n0
n1
n2
n3
n4
n5
n10 n11 n12 n13 n14 n15
Notes: 1. BL = 16, Preamble = Static, Postamble = 1.5nCK (extended).
2. DQS and DQ terminated VSSQ.
3. DQS_t/DQS_c is "Don’t Care" prior to the start of tRPRE. No transition of DQS is implied, as DQS_t/DQS_c can be
HIGH, LOW, or High-Z prior to tRPRE.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
79
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Figure 20: DQS Write Preamble and Postamble – 0.5nCK Postamble
T0
T1
T2
T3
Valid
Valid
Valid
Valid
T4
Ta0
Ta1
Ta2
Ta3
Ta4
Ta5
Tb0
Tb1
Tb2
Tb3
Tb4
Tb5
Tb6
Tb7
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
CKE
CS
CA
Command
WRITE-1
CAS-2
WL
tDQSS
t
WPRE
t WPST
DQS_c
DQS_t
BL/2
tDQS2DQ
DQ
DMI
DIN
n0
DIN
n1
DIN
n2
DIN
n3
DIN
n8
DIN
n9
DIN
n10
DIN
n11
DIN
n12
DIN
n13
DIN
n14
DIN
n15
Don’t Care
Notes: 1. BL = 16, Postamble = 0.5nCK.
2. DQS and DQ terminated VSSQ.
3. DQS_t/DQS_c is "Don’t Care" prior to the start of tWPRE. No transition of DQS is implied, as DQS_t/DQS_c can be
HIGH, LOW, or High-Z prior to tWPRE.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
80
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Figure 21: DQS Write Preamble and Postamble – 1.5nCK Postamble
T0
T1
T2
T3
Valid
Valid
Valid
Valid
T4
Ta0
Ta1
Ta2
Ta3
Ta4
Ta5
Tb0
Tb1
Tb2
Tb3
Tb4
Tb5
Tb6
Tb7
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
CKE
CS
CA
Command
WRITE-1
CAS-2
WL
tDQSS
t
t WPST
WPRE
DQS_c
DQS_t
BL/2
tDQS2DQ
DQ
DMI
DIN
n0
DIN
n1
DIN
n2
DIN
n3
DIN
n8
DIN
n9
DIN
n10
DIN
n11
DIN
n12
DIN
n13
DIN
n14
DIN
n15
Don’t Care
Notes: 1. BL = 16, Postamble = 1.5nCK.
2. DQS and DQ terminated VSSQ.
3. DQS_t/DQS_c is "Don’t Care" prior to the start of tWPRE. No transition of DQS is implied, as DQS_t/DQS_c can be
HIGH, LOW, or High-Z prior to tWPRE.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
81
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Burst READ Operation
A burst READ command is initiated with CKE, CS, and CA[5:0] asserted to the proper state on the rising
edge of CK, as defined by the Command Truth Table. The command address bus inputs determine the
starting column address for the burst. The two low-order address bits are not transmitted on the CA
bus and are implied to be 0; therefore, the starting burst address is always a multiple of four (that is,
0x0, 0x4, 0x8, 0xC).
The READ latency (RL) is defined from the last rising edge of the clock that completes a READ
command (for example, the second rising edge of the CAS-2 command) to the rising edge of the clock
from which the tDQSCK delay is measured. The first valid data is available RL × tCK + tDQSCK + tDQSQ
after the rising edge of clock that completes a READ command.
The data strobe output is driven tRPRE before the first valid rising strobe edge. The first data bit of the
burst is synchronized with the first valid (post-preamble) rising edge of the data strobe. Each subsequent data-out appears on each DQ pin, edge-aligned with the data strobe. At the end of a burst, the
DQS signals are driven for another half cycle postamble, or for a 1.5-cycle postamble if the programmable postamble bit is set in the mode register. The RL is programmed in the mode registers. Pin
timings for the data strobe are measured relative to the cross-point of DQS_t and DQS_c.
Figure 22: Burst Read Timing
T0
T1
T2
T3
BL
BA0,
CA, AP
CAn
CAn
T4
T5
T6
T7
T15
T16
T17
T18
T19
BL
BA0,
CA, AP
CAm
CAm
T20
T21
T22
T23
DES
DES
DES
T33
T34
T35
T36
DES
DES
DES
T41
T42
T43
T44
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
READ-1
CAS-2
DES
DES
DES
t
DES
DES
READ-1
CAS-2
DES
CCD = 16
RL = 14
RL = 14
t DQSCK
DES
t DQSCK
BL/2 = 8
BL/2 = 16
t
t RPST
RPRE
DQS_c
DQS_t
tDQSQ
tDQSQ
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n7 n26 n27 n28 n29 n30 n31 m0 m1 m10 m11 m12 m13 m14 m15
n1 n2
n6
n0
n3
n4
n5
DQ
DMI
Don’t Care
Notes: 1. BL = 32 for column n, BL = 16 for column m, RL = 14, Preamble = Toggle, Postamble = 0.5nCK, DQ/DQS: VSSQ termination.
2. DOUT n/m = data-out from column n and column m.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
82
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Figure 23: Burst Read Followed by Burst Write or Burst Mask Write
T0
T1
T2
T3
BL
BA0,
CA, AP
CA
CA
T4
T5
Ta0
Ta1
Ta2
BL
BA0,
CA, AP
Ta3
Ta4
CA
CA
Tb0
Tb1
Tb2
Tb3
Tb4
Tb5
DES
DES
DES
DES
DES
DES
Tb6
Tb7
Tc0
Tc1
DES
DES
DES
DES
Tc2
Tc3
Tc4
Tc5
Tc6
Tc7
DES
DES
CK_c
CK_t
CS
CA
READ-1
Command
CAS-2
DES
WR-1/MWR-1
DES
DES
CAS-2
RL + RU( tDQSCK(MAX)/ tCK) + BL/2
+ RD( tRPST) - WL + tWPRE
WL
t DQSCK
RL
t
DES
DES
DES
DES
t DQSS
BL/2 = 8
t
RPRE
WPRE
DQS_c
DQS_t
tDQSQ
DQ
DMI
tDQS2DQ
tRPST
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n0
n9 n10 n11 n12 n13 n14 n15
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n9 n10 n11 n12 n13 n14 n15
n0
Don’t Care
Notes: 1. BL = 16, Read preamble = Toggle, Read postamble = 0.5nCK, Write preamble = 2nCK, Write postamble = 0.5nCK,
DQ/DQS: VSSQ termination.
2. DOUT n = data-out from column n and DIN n = data-in to column n.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
Figure 24: Seamless Burst Read
T0
T1
T2
T3
Ta0
Ta1
Ta2
BL
BA0,
CA, AP
CAn
CAn
BL
BA0,
CA, AP
Ta3
Tb0
Tb1
Tb2
Tb3
Tb4
Tc0
Tc1
DES
DES
DES
Tc2
Tc3
Td0
Td1
Td2
Td3
Te0
Te1
DES
DES
DES
DES
DES
Te2
Te3
CK_c
CK_t
CS
CA
Command
READ-1
CAS-2
DES
CAm
CAm
CAS-2
READ-1
BL
DES
BA1,
CA, AP
CAn
READ-1
CAn
CAS-2
DES
DES
DES
DES
t DQSCK
RL
t DQSCK
RL
RL
DES
t DQSCK
t
RPRE
DQS_c
DQS_t
tDQSQ
DQ
DMI
tDQSQ
tDQSQ
tRPST
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n15
n10 n11 n12 n13 n14
n0
n1 n10 n11 n12 n13 n14 n15 m0 m1 m10 m11 m12 m13 m14 m15 n0 n1
Bank 0
Bank 1
Don’t Care
Notes: 1. BL = 16, tCCD = 8, Preamble = Toggle, Postamble = 0.5nCK, DQ/DQS: VSSQ termination.
2. DOUT n/m = data-out from column n and column m.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
83
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Read Timing
Figure 25: Read Timing
T0
T1
T2
T3
T4
Ta0
Ta1
Tb0
Tb1
Tb2
Tb3
Tb4
Tb5
Tb6
Tb7
Tc0
Tc1
Tc2
Tc3
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
RD-1
CAS-2
t
HZ(DQS)
t
RL
DQSCK
t
LZ(DQS)
t
RPRE
DQS_c
DQS_t
t
DQSQ
t
RPST
t
HZ(DQ)
t
LZ(DQ)
DQ
DMI
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n0
n1
n2
n3
n4
n5
n10 n11 n12 n13 n14 n15
Notes: 1. BL = 16, Preamble = Toggling, Postamble = 0.5nCK.
2. DQS, DQ, and DMI terminated VSSQ.
3. Output driver does not turn on before an endpoint of tLZ(DQS) and tLZ(DQ).
4. Output driver does not turn off before an endpoint of tHZ(DQS) and tHZ(DQ).
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
84
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
tLZ(DQS), tLZ(DQ), tHZ(DQS), tHZ(DQ)
Calculation
tHZ and tLZ transitions occur in the same time window as valid data transitions. These parameters are
referenced to a specific voltage level that specifies when the device output is no longer driving
tHZ(DQS) and tHZ(DQ), or begins driving tLZ(DQS) and tLZ(DQ). This section shows a method to
calculate the point when the device is no longer driving tHZ(DQS) and tHZ(DQ), or begins driving
tLZ(DQS) and tLZ(DQ), by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent. The parameters tLZ(DQS), tLZ(DQ),
tHZ(DQS), and tHZ(DQ) are defined as single ended.
tLZ(DQS)
and tHZ(DQS) Calculation for ATE (Automatic Test Equipment)
Figure 26: tLZ(DQS) Method for Calculating Transitions and Endpoint
CK_t – CK_c crossing at the second CAS-2 of READ command
CK_t
CK_c
tLZ(DQS)
DQS_c
VOH
VSW2
0.5 x VOH
VSW1
End point: Extrapolated point
0V
Notes: 1. Conditions for calibration: Pull down driver RON = 40 ohms, VOH = VDDQ × 0.5.
2. Termination condition for DQS_t and DQS_C = 50 ohms to VSSQ.
3. The VOH level depends on MR22 OP[2:0] and MR3 OP[0] settings as well as device tolerances. Use the actual VOH
value for tHZ and tLZ measurements.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
85
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Figure 27: tHZ(DQS) Method for Calculating Transitions and Endpoint
CK_t – CK_c crossing at the second CAS-2 of READ command
CK_t
CK_c
tHZ(DQS)
End point: Extrapolated point
VOH
VSW2
0.5 x VOH
VSW1
DQS_c
0V
Notes: 1. Conditions for calibration: Pull down driver RON = 40 ohms, VOH = VDDQ × 0.5.
2. Termination condition for DQS_t and DQS_C = 50 ohms to VSSQ.
3. The VOH level depends on MR22 OP[2:0] and MR3 OP[0] settings as well as device tolerances. Use the actual VOH
value for tHZ and tLZ measurements.
Table 98: Reference Voltage for tLZ(DQS), tHZ(DQS) Timing Measurements
Measured Parameter
Measured Parameter
Symbol
DQS_c Low-Z time
from CK_t, CK_c
tLZ(DQS)
DQS_c High-Z time
from CK_t, CK_c
t
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
Vsw1
Vsw2
Unit
0.4 × VOH
0.6 × VOH
V
0.4 × VOH
HZ(DQS)
86
0.6 × VOH
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
tLZ(DQ)
and tHZ(DQ) Calculation for ATE (Automatic Test Equipment)
Figure 28: tLZ(DQ) Method for Calculating Transitions and Endpoint
CK_t – CK_c crossing at the second CAS-2 of READ command
CK_t
CK_c
t LZ(DQ)
DQs
VOH
VSW2
0.5 x VOH
VSW1
End point: Extrapolated point
0V
Notes: 1. Conditions for calibration: Pull down driver RON = 40 ohms, VOH = VDDQ × 0.5.
2. Termination condition for DQ and DMI = 50 ohms to VSSQ.
3. The VOH level depends on MR22 OP[2:0] and MR3 OP[0] settings as well as device tolerances. Use the actual VOH
value for tHZ and tLZ measurements.
Figure 29: tHZ(DQ) Method for Calculating Transitions and Endpoint
CK_t – CK_c crossing at the second CAS-2 of READ command
CK_t
CK_c
tHZ(DQ)
End point: Extrapolated point
VOH
VSW2
0.5 x VOH
VSW1
DQs
0V
Notes: 1. Conditions for calibration: Pull down driver RON = 40 ohms, VOH = VDDQ × 0.5.
2. Termination condition for DQ and DMI = 50 ohms to VSSQ.
3. The VOH level depends on MR22 OP[2:0] and MR3 OP[0] settings as well as device tolerances. Use the actual VOH
value for tHZ and tLZ measurements.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
87
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 99: Reference Voltage for tLZ(DQ), tHZ(DQ) Timing Measurements
Measured Parameter
Measured Parameter
Symbol
DQ Low-Z time
from CK_t, CK_c
tLZ(DQ)
DQ High-Z time
from CK_t, CK_c
t
Vsw1
Vsw2
Unit
0.4 × VOH
0.6 × VOH
V
0.4 × VOH
HZ(DQ)
0.6 × VOH
Burst WRITE Operation
A burst WRITE command is initiated with CKE, CS, and CA[5:0] asserted to the proper state at the rising
edge of CK, as defined by the Command Truth Table. Column addresses C[3:2] should be driven LOW
for burst WRITE commands, and column addresses C[1:0] are not transmitted on the CA bus and are
assumed to be zero so that the starting column burst address is always aligned with a 32-byte
boundary. The WRITE latency (WL) is defined from the last rising edge of the clock that completes a
WRITE command (for example, the second rising edge of the CAS-2 command) to the rising edge of the
clock from which tDQSS is measured. The first valid latching edge of DQS must be driven WL × t CK +
tDQSS after the rising edge of clock that completes a WRITE command.
The device uses an unmatched DQS DQ path for lower power, so the DQS strobe must arrive at the
SDRAM ball prior to the DQ signal by tDQS2DQ. The DQS strobe output must be driven tWPRE before
the first valid rising strobe edge. The tWPRE preamble is required to be 2 × tCK at any speed ranges. The
DQS strobe must be trained to arrive at the DQ pad latch center-aligned with the DQ data. The DQ data
must be held for TdiVW, and the DQS must be periodically trained to stay roughly centered in the
TdiVW. Burst data is captured by the SDRAM on successive edges of DQS until the 16- or 32-bit data
burst is complete. The DQS strobe must remain active (toggling) for tWPST (write postamble) after the
completion of the burst WRITE. After a burst WRITE operation, tWR must be satisfied before a
PRECHARGE command to the same bank can be issued. Signal input timings are measured relative to
the cross point of DQS_t and DQS_c.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
88
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Figure 30: Burst WRITE Operation
T0
T1
T2
T3
BL
BA0,
CA, AP
CA
CA
T4
Ta0
Ta1
Ta2
Ta3
Ta4
Ta5
Ta6
Tb0
Tb1
Tb2
Tc0
Tc1
Tc2
Valid
BA0
Tc3
Tc4
Td0
Td1
Td2
Td3
Tb4
Td5
RA
BA0,
RA
RA
RA
CK_c
CK_t
CS
CA
Command
CAS-2
WRITE-1
DES
DES
DES
DES
DES
WL
DES
DES
DES
DES
DES
DES
DES
BL/2 + 1 Clock
tDQSS
tWPRE
DES
PRECHARGE
DES
DES
DES
tWR
DES
ACT-2
ACT-1
tRP
(MIN)
tDSH
tDSS
DQS_c
tWPST
DQS_t
tDQS2DQ
DIN DIN DIN DIN DIN DIN DIN DIN DIN DIN
n0 n1 n2 n3 n4 n5 n12 n13 n14 n15
DQ
tDQSS
(Nominal)
tWPRE
DQS_c
DQS_t
tDQS2DQ
DIN DIN DIN DIN DIN DIN DIN DIN DIN DIN
n0 n1 n2 n3 n4 n11 n12 n13 n14 n15
tDQSS (MAX)
DQ
tWPRE
DQS_c
DQS_t
tDQS2DQ
DIN DIN DIN DIN DIN DIN DIN DIN DIN DIN
n0 n1 n2 n3 n4 n11 n12 n13 n14 n15
DQ
Don’t Care
Notes: 1. BL = 16, Write postamble = 0.5nCK, DQ/DQS: VSSQ termination.
2. DIN n = data-in to column n.
3. tWR starts at the rising edge of CK after the last latching edge of DQS.
4. DES commands are shown for ease of illustration; other commands may be valid at these times.
Figure 31: Burst Write Followed by Burst Read
T0
T1
T2
T3
BL
BA0,
CA, AP
CA
CA
T4
Ta0
Ta1
Ta2
Ta3
Ta4
Ta5
Ta6
Tb0
Tb1
Tb2
Tc0
Tc1
Tc2
Tc3
Tc4
Tc5
Tc6
BL
BA0,
CA, AP
CA
CA
Tc7
Tc8
Tc9
Tc10
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
WRITE-1
CAS-2
DES
DES
DES
DES
DES
WL
DES
DES
DES
DES
DES
DES
DES
tWPRE
DES
DES
tWTR
BL/2 + 1 Clock
tDQSS
DES
READ-1
CAS-2
RL
(MIN)
tDSH
tDSS
tWPST
DQS_c
DQS_t
DQ
tDQS2DQ
DIN DIN DIN DIN DIN DIN DIN DIN DIN DIN
n0 n1 n2 n3 n4 n5 n12 n13 n14 n15
Don’t Care
Notes: 1. BL = 16, Write postamble = 0.5nCK, DQ/DQS: VSSQ termination.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
89
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
2. DIN n = data-in to column n.
3. The minimum number of clock cycles from the burst WRITE command to the burst READ command for any bank is
[WL + 1 + BL/2 + RU(tWTR/tCK)].
4. tWTR starts at the rising edge of CK after the last latching edge of DQS.
5. DES commands are shown for ease of illustration; other commands may be valid at these times.
Write Timing
Figure 32: Write Timing
T0
T1
T2
T3
BL
BA0,
CA, AP
CA
CA
T4
Ta0
Ta1
Ta2
Ta3
Ta4
Ta5
Ta6
DES
DES
DES
DES
DES
DES
DES
DES
Tb0
Tb1
Tb2
Tb3
Tb4
Tb5
DES
DES
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
WRITE-1
CAS-2
DES
WL
tDQSS
tDQSS
(MIN)
tWPRE
(MIN)
tDSH
tDSS
tWPST
DQS_c
DQS_t
tDQS2DQ
DIN DIN DIN DIN DIN DIN DIN DIN DIN DIN
n0 n1 n2 n3 n4 n5 n12 n13 n14 n15
DQ
tDQSS
tDQSS
(Nominal)
(Nominal)
tDSH
tWPRE
tDSS
DQS_c
DQS_t
tDQS2DQ
DIN DIN DIN DIN DIN DIN DIN DIN DIN DIN
n0 n1 n2 n3 n4 n11 n12 n13 n14 n15
DQ
tDQSS
tDQSS
(MAX)
(MAX)
tWPRE
tDSH
tDSS
DQS_c
DQS_t
tDQS2DQ
tDQSH
tDQSL
DIN DIN DIN DIN DIN DIN DIN DIN DIN DIN
n0 n1 n2 n3 n4 n11 n12 n13 n14 n15
DQ
Don’t Care
Notes: 1. BL = 16, Write postamble = 0.5nCK.
2. DIN n = data-in to column n.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
90
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
tWPRE
Calculation for ATE (Automatic Test Equipment)
Figure 33: Method for Calculating tWPRE Transitions and Endpoints
CK_t
Vref(CA)
CK_c
Resulting differential signal
relevant for tWPRE specification
Vsw2
Vsw1
DQS_t - DQS_c
0V
Begin point:
Extrapolated point
tWPRE
Note: 1. Termination condition for DQS_t, DQS_c, DQ, and DMI = 50 ohms to VSSQ.
Table 100: Method for Calculating tWPRE Transitions and Endpoints
Measured Parameter
DQS_t, DQS_c
differential write preamble
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
Measured Parameter
Symbol
t
WPRE
91
Vsw1
Vsw2
Unit
VIHL_AC × 0.3
VIHL_AC × 0.7
V
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
tWPST
Calculation for ATE (Automatic Test Equipment)
Figure 34: Method for Calculating tWPST Transitions and Endpoints
CK_t
Vref(CA)
CK_c
Resulting differential signal
relevant for tWPST specification
0V
Vsw2
Vsw1
DQS_t - DQS_c
End point:
Extrapolated point
tWPST
Notes: 1. Termination condition for DQS_t, DQS_c, DQ, and DMI = 50 ohms to VSSQ.
2. Write postamble: 0.5tCK
3. The method for calculating differential pulse widths for 1.5tCK postamble is same as 0.5tCK postamble.
Table 101: Reference Voltage for tWPST Timing Measurements
Measured Parameter
DQS_t, DQS_c
differential write postamble
Measured Parameter
Symbol
tWPST
Vsw1
Vsw2
Unit
–(VIHL_AC × 0.7)
–(VIHL_AC × 0.3)
V
MASK WRITE Operation
The device requires that WRITE operations that include a byte mask anywhere in the burst sequence
must use the MASK WRITE command. This allows the device to implement efficient data protection
schemes based on larger data blocks. The MASK WRITE-1 command is used to begin the operation,
followed by a CAS-2 command. A MASKED WRITE command to the same bank cannot be issued until
t
CCDMW later, to allow the device to finish the internal READ-MODIFY-WRITE operation. One
data-mask-invert (DMI) pin is provided per byte lane, and the data-mask-invert timings match data bit
(DQ) timing. See Data Mask Invert for more information on the use of the DMI signal.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
92
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Figure 35: MASK WRITE Command – Same Bank
T0
T1
T2
T3
BL
BA0,
CA, AP
CA
CA
T4
Ta0
Ta1
Ta2
Ta3
Ta4
Ta5
Ta6
Tb0
Tb1
Tb2
Tc0
Tc1
Tc2
Tc3
Tc4
BL
BA0,
CA, AP
Tc5
Tc6
CA
CA
Tc7
Tc8
Tc9
Tc10
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
MASK WRITE-1
CAS-2
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
MASK WRITE-1
CAS-2
tCCDMW
WL
WL
tDQSS(MIN)
t
tWPRE
WPST
DQS_c
DQS_t
tDQS2DQ
DIN
n0
DQ
DMI
DIN DIN
n1 n2
DIN DIN
n3 n4
DIN DIN DIN DIN
n5 n12 n13 n14
DIN
n15
Don’t Care
Notes: 1. BL = 16, Write postamble = 0.5nCK, DQ/DQS: VSSQ termination.
2. DIN n = data-in to column n.
3. Mask-write supports only BL16 operations. For BL32 configuration, the system needs to insert only 16-bit wide data
for MASKED WRITE operation.
4. DES commands are shown for ease of illustration; other commands may be valid at these time.
Figure 36: MASK WRITE Command – Different Bank
T0
T1
T2
T3
T8
T9
BL
BA0,
CA, AP
CA
CA
BL
BA1,
CA, AP
T10
T11
CA
CA
T16
T17
T18
T19
T24
T25
T26
T27
T32
T33
T34
T35
BL
BA2,
CA, AP
CA
CA
BL
BA3,
CA, AP
CA
CA
BL
BA0,
CA, AP
CA
CA
T36
T37
T38
DES
DES
DES
CK_c
CK_t
CS
CA
Command MASK WRITE-1
CAS-2
MASK WRITE-1
DES
CAS-2
DES
MASK WRITE-1
tCCD
DES
CAS-2
MASK WRITE-1
tCCD
DES
CAS-2
tCCD
MASK WRITE-1
CAS-2
tCCD
tCCDMW
WL
tDQSS
tWPRE
DQS_c
DQS_t
tDQS2DQ
DQ
DMI
DIN
n0
DIN
n1
DIN
n2
DIN DIN
n3 n10
DIN DIN DIN DIN DIN
n11 n12 n13 n14 n15
DIN
n0
DIN DIN
n1 n2
DIN DIN
n3 n10
DIN DIN
n11 n12
DIN DIN DIN
n13 n14 n15
DIN
n0
DIN
n1
DIN DIN
n2 n10
DIN DIN
n11 n12
DIN DIN DIN
n13 n14 n15
DIN
n0
DIN
n1
DIN
n2
DIN DIN
n3 n4
DIN
n5
DIN
n6
DIN DIN
n8
n7
Don’t Care
Notes: 1. BL = 16, DQ/DQS/DMI: VSSQ termination.
2. DIN n = data-in to column n.
3. Mask-write supports only BL16 operations. For BL32 configuration, the system needs to insert only 16-bit wide data
for MASKED WRITE operation.
4. DES commands are shown for ease of illustration; other commands may be valid at these time.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
93
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Mask Write Timing Constraints for BL16
Table 102: Same Bank (ODT Disabled)
Next CMD
Current CMD
ACTIVE
READ
(BL = 16 or 32)
WRITE
(BL = 16 or 32)
MASK WRITE
PRECHARGE
ACTIVE
Illegal
RU(tRCD/tCK)
RU(tRCD/tCK)
RU(tRCD/tCK)
RU(tRAS/tCK)
READ
(with BL = 16)
Illegal
81
RL +
BL/2 +
RL +
RU(tDQSCK(MAX)/t RU(tDQSCK(MAX)/t MAX{(8,RU(tRTP/tC
K)} - 8
CK) + BL/2 - WL +
CK) + BL/2 - WL +
tWPRE + RD(tRPST) tWPRE + RD(tRPST)
READ
(with BL = 32)
Illegal
162
RL +
BL/2 +
RL +
RU(tDQSCK(MAX)/t RU(tDQSCK(MAX)/t MAX{(8,RU(tRTP/tC
K)} - 8
CK) + BL/2 - WL +
CK) + BL/2 - WL +
tWPRE + RD(tRPST) tWPRE + RD(tRPST)
WRITE
(with BL = 16)
Illegal
WL + 1+ BL/2 +
RU(tWTR/tCK)
81
WRITE
(with BL = 32)
Illegal
WL + 1 + BL/2 +
RU(tWTR/tCK)
162
MASK WRITE
Illegal
WL + 1 + BL/2 +
RU(tWTR/tCK)
PRECHARGE
RU(tRP/tCK),
RU(tRPab/tCK)
Illegal
CCDMW3
WL + 1 + BL/2 +
RU(tWR/tCK)
CCDMW + 84
WL + 1 + BL/2 +
RU(tWR/tCK)
tCCD
tCCDMW3
WL + 1 + BL/2 +
RU(tWR/tCK)
Illegal
Illegal
4
t
t
Notes: 1. In the case of BL = 16, tCCD is 8 × tCK.
2. In the case of BL = 32, tCCD is 16 × tCK.
3. tCCDMW = 32 × tCK (4 × tCCD at BL = 16).
4. WRITE with BL = 32 operation is 8 × tCK longer than BL = 16.
Table 103: Different Bank (ODT Disabled)
Next CMD
Current CMD
ACTIVE
READ
(BL = 16 or 32)
WRITE
(BL = 16 or 32)
MASK WRITE
PRECHARGE
RU(tRRD/tCK)
4
4
4
22
READ
(with BL = 16)
4
81
READ
(with BL = 32)
4
162
WRITE
(with BL = 16)
4
WL + 1+ BL/2 +
RU(tWTR/tCK)
81
81
22
WRITE
(with BL = 32)
4
WL + 1 + BL/2 +
RU(tWTR/tCK)
162
162
22
ACTIVE
RL +
RL +
RU(tDQSCK(MAX)/t RU(tDQSCK(MAX)/t
CK) + BL/2 - WL +
CK) + BL/2 - WL +
t
WPRE + RD(tRPST) tWPRE + RD(tRPST)
RL +
tDQSCK(MAX)/t
RL +
tDQSCK(MAX)/t
22
22
RU(
RU(
CK) + BL/2 - WL +
CK) + BL/2 - WL +
t
t
t
WPRE + RD( RPST) WPRE + RD(tRPST)
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
94
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 103: Different Bank (ODT Disabled) (Continued)
Next CMD
Current CMD
ACTIVE
READ
(BL = 16 or 32)
WRITE
(BL = 16 or 32)
MASK WRITE
4
WL + 1 + BL/2 +
RU(tWTR/tCK)
8
PRECHARGE
4
4
READ
(BL = 16 or 32)
MASK WRITE
1
PRECHARGE
1
22
4
4
4
WRITE
(BL = 16 or 32)
MASK WRITE
PRECHARGE
RU(tRCD/tCK)
RU(tRCD/tCK)
RU(tRAS/tCK)
RL +
BL/2 +
MAX{(8,RU(tRTP/tC
K)} - 8
8
Notes: 1. In the case of BL = 16, tCCD is 8 × tCK
2. In the case of BL = 32, tCCD is 16 × tCK
Table 104: Same Bank (ODT Enabled)
Next CMD
Current CMD
ACTIVE
ACTIVE
Illegal
READ
(with BL = 16)
Illegal
READ
(with BL = 32)
tRCD/tCK)
RU(
RL +
81
tDQSCK(MAX)/t
RU(
CK) + BL/2 +
RD(tRPST) - ODTLon - RD(tODTon(MIN)/tCK)
Illegal
RU(tDQSCK(MAX)/t
CK) + BL/2 +
RD(tRPST) - ODTLon - RD(tODTon(MIN)/tCK)
RL +
RL +
162
tDQSCK(MAX)/t
RU(
CK) + BL/2 +
RD(tRPST) - ODTLon - RD(tODTon(MIN)/tCK)
WRITE
(with BL = 16)
Illegal
WL + 1+ BL/2 +
RU(tWTR/tCK)
81
WRITE
(with BL = 32)
Illegal
WL + 1 + BL/2 +
RU(tWTR/tCK)
162
MASK WRITE
Illegal
WL + 1 + BL/2 +
RU(tWTR/tCK)
PRECHARGE
RU(tRP/tCK),
RU(tRPab/tCK)
Illegal
t
CCD
Illegal
RU(tDQSCK(MAX)/t
CK) + BL/2 +
RD(tRPST) - ODTLon - RD(tODTon(MIN)/tCK)
tCCDMW3
tCCDMW
+ 84
BL/2 +
MAX{(8,RU(tRTP/tC
K)} - 8
WL + 1 + BL/2 +
RU(tWR/tCK)
WL + 1 + BL/2 +
RU(tWR/tCK)
CCDMW3
WL + 1 + BL/2 +
RU(tWR/tCK)
Illegal
4
t
Notes: 1. In the case of BL = 16, tCCD is 8 × tCK.
2. In the case of BL = 32, tCCD is 16 × tCK.
3. tCCDMW = 32 × tCK (4 × tCCD at BL = 16).
4. WRITE with BL = 32 operation is 8 × tCK longer than BL = 16.
Table 105: Different Bank (ODT Enabled)
Next CMD
Current CMD
ACTIVE
ACTIVE
READ
(BL = 16 or 32)
WRITE
(BL = 16 or 32)
MASK WRITE
PRECHARGE
RU(tRRD/tCK)
4
4
4
22
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
95
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 105: Different Bank (ODT Enabled) (Continued)
Next CMD
Current CMD
ACTIVE
READ
(BL = 16 or 32)
WRITE
(BL = 16 or 32)
MASK WRITE
PRECHARGE
8
RL +
RL +
tDQSCK(MAX)/t RU(tDQSCK(MAX)/t
RU(
CK) + BL/2 +
CK) + BL/2 +
tRPST) - ODTRD(
RD(tRPST) - ODTt
Lon - RD( ODLon - RD(tODTon(MIN)/tCK)
Ton(MIN)/tCK)
22
162
RL +
RL +
t RU(t
DQSCK(MAX)/t
RU( DQSCK(MAX)/
CK) + BL/2 +
CK) + BL/2 +
RD(tRPST) - ODTRD(tRPST) - ODTLon - RD(tODLon - RD(tODTon(MIN)/tCK)
Ton(MIN)/tCK)
22
READ
(with BL = 16)
4
READ
(with BL = 32)
4
WRITE
(with BL = 16)
4
WL + 1+ BL/2 +
RU(tWTR/tCK)
81
81
22
WRITE
(with BL = 32)
4
WL + 1 + BL/2 +
RU(tWTR/tCK)
162
162
22
MASK WRITE
4
WL + 1 + BL/2 +
RU(tWTR/tCK)
81
81
22
PRECHARGE
4
4
4
4
4
1
t
Notes: 1. In the case of BL = 16, tCCD is 8 × tCK.
2. In the case of BL = 32, tCCD is 16 × tCK.
Data Mask and Data Bus Inversion (DBI [DC]) Function
Data mask (DM) is supported for WRITE operations and the data bus inversion DBI (DC) is supported
for READ, WRITE, MASK WRITE, MRR, and MRW operations. DM and DBI (DC) functions are
supported with byte granularity. DBI (DC) for READ operations (READ, MRR) can be enabled or
disabled via MR3 OP[6]. DBI (DC) for WRITE operations (WRITE, MASK WRITE, MRW) can be enabled
or disabled via MR3 OP[7]. DM for MASK WRITE operations can be enabled or disabled via MR13
OP[5]. The device has one data mask inversion (DMI) pin per byte and a total of two DMI pins per
channel. The DMI signal is a bidirectional DDR signal, is sampled with the DQ signals, and is electrically identical to a DQ signal.
There are eight possible states for the device with the DM and DBI (DC) functions.
Table 106: Function Behavior of DMI Signal During WRITE, MASKED WRITE, and READ Operations
DMI Signal
DM
Function
Write DBI
(DC)
Read DBI
(DC)
During
WRITE
During
MASKED
WRITE
During
READ
During
MPC[WRIT
E-FIFO]
Disabled
Disabled
Disabled
Don't Care1
Illegal1, 3
High-Z2
Don't Care1
High-Z2
High-Z2
Disabled
Enabled
Disabled
DBI (DC)4
Illegal3
High-Z2
Train9
Train10
Train11
Disabled
Disabled
Enabled
Don't Care1
Illegal3
DBI (DC)5
Train9
Train10
Train11
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
96
During
During
MPC[READ MPC[READ
-FIFO]
DQ CAL]
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Table 106: Function Behavior of DMI Signal During WRITE, MASKED WRITE, and READ Operations
DMI Signal
DM
Function
Write DBI
(DC)
Read DBI
(DC)
During
WRITE
During
MASKED
WRITE
During
READ
During
MPC[WRIT
E-FIFO]
During
During
MPC[READ MPC[READ
-FIFO]
DQ CAL]
Disabled
Enabled
Enabled
DBI (DC)4
Illegal3
DBI (DC)5
Train9
Train10
Train11
Enabled
Disabled
Disabled
Don't Care6
DM7
High-Z2
Train9
Train10
Train11
Enabled
Enabled
Disabled
DBI (DC)4
DBI (DC)8
High-Z2
Train9
Train10
Train11
Enabled
Disabled
Enabled
Don't Care6
DM7
DBI (DC)5
Train9
Train10
Train11
Enabled
Enabled
Enabled
DBI (DC)4
DBI (DC)8
DBI (DC)5
Train9
Train10
Train11
Notes: 1.
2.
3.
4.
The DMI input signal is "Don’t Care." DMI input receivers are turned off.
DMI output drivers are turned off.
The MASK WRITE command is not allowed and is considered an illegal command when the DM function is disabled.
The DMI signal is treated as DBI and indicates whether the device needs to invert the write data received on DQ
within a byte. The device inverts write data received on the DQ inputs if DMI is sampled HIGH and leaves the write
data non-inverted if DMI is sampled LOW.
5. The device inverts read data on its DQ outputs associated within a byte and drives the DMI signal HIGH when more
than four data bits = 1 within a given byte lane; otherwise, the device does not invert the read data and drives DMI
signal LOW.
6. The device does not perform a MASK operation when it receives a WRITE (or MRW) command. During the WRITE
burst, the DMI signal must be driven LOW.
7. The device requires an explicit MASKED WRITE command for all MASKED WRITE operations. The DMI signal is
treated as a data mask (DM) and indicates which bytes within a burst will be masked. When the DMI signal is
sampled HIGH, the device masks that beat of the burst for the given byte lane. All DQ input signals within a byte
are "Don't Care" (either HIGH or LOW) when DMI is HIGH. When the DMI signal is sampled LOW, the device does
not perform a MASK operation and data received on the DQ inputs is written to the array.
8. The device requires an explicit MASKED WRITE command for all MASKED WRITE operations. The device masks the
write data received on the DQ inputs if five or more data bits = 1 on DQ[2:7] or DQ[10:15] (for lower byte or upper
byte respectively) and the DMI signal is LOW. Otherwise, the device does not perform the MASK operation and
treats it as a legal DBI pattern. The DMI signal is treated as a DBI signal, and data received on the DQ input is
written to the array.
9. The DMI signal is treated as a training pattern. The device does not perform any MASK operation and does not
invert write data received on the DQ inputs.
10. The DMI signal is treated as a training pattern. The device returns the data pattern written to the WRITE-FIFO.
11. The DMI signal is treated as a training pattern. For more information, see the Read DQ Calibration Training section.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
97
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Figure 37: MASKED WRITE Command with Write DBI Enabled; DM Enabled
T0
T1
T2
T3
Ta0
Ta1
Ta2
Ta3
Ta4
Ta5
Ta6
Tb0
DES
DES
DES
DES
DES
DES
DES
DES DES
CK_c
CK_t
CKE
CS
CA Valid Valid Valid Valid
Command
MASK WRITE-1
CAS-2
t
WL
DQSS
DQS_c
DQS_t
t
t
DQS2DQ
WPRE
DQ[7:0]
Valid Valid
Valid Valid Valid Valid Valid Valid Valid Valid
N1 I 2 I
M3 N
I
N M N N
DMI[0]
Don’t Care
Notes: 1.
2.
3.
4.
N: Input data is written to DRAM cell.
I: Input data is inverted, then written to DRAM cell.
M: Input data is masked. The total count of 1 data bits on DQ[7:2] is equal to or greater than five.
Data mask (DM) is enable: MR13 OP [5] = 0, Data bus inversion (DBI) write is enable: MR3 OP[7] = 1.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
98
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Figure 38: WRITE Command with Write DBI Enabled; DM Disabled
T0
T1
T2
T3
Ta0
Ta1
Ta2
Ta3
Ta4
Ta5
Ta6
Tb0
DES
DES
DES
DES
DES
DES
DES
DES DES
CK_c
CK_t
CKE
CS
CA Valid Valid Valid Valid
Command
WRITE-1
CAS-2
t
WL
DQSS
DQS_c
DQS_t
t
DQS2DQ
t
WPRE
DQ[7:0]
Valid Valid Valid
N1 N
Valid Valid Valid Valid Valid Valid Valid
I2 I
N N
I
N N
N
DMI[0]
Don’t Care
Notes: 1. N: Input data is written to DRAM cell.
2. I: Input data is inverted, then written to DRAM cell.
3. Data mask (DM) is disable: MR13 OP [5] = 1, Data bus inversion (DBI) write is enable: MR3 OP[7] = 1.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
99
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
WRITE and MASKED WRITE Operation DQS Control (WDQS Control)
The device supports WRITE, MASKED WRITE, and WR-FIFO operations with the following DQS
controls. Before and after WRITE, MASKED WRITE, and WR-FIFO operations, DQS_t, and DQS_c are
required to have sufficient voltage gap to make sure the write buffers operate normally without any risk
of meta-stability.
The device is supported by either of the two WDQS control modes below.
• Mode 1: Read-based control
• Mode 2: WDQS_on/WDQS_off definition based control
Regardless of ODT enable/disable, WDQS-related timing described here does not allow any change of
existing command timing constraints for all READ/WRITE operations. In case of any conflict or ambiguity on the command timing constraints caused by the specification here, the specification defined
in the Timing Constraints for Training Commands table should have higher priority than WDQS
control requirements.
To prevent write preamble related failure, either of the two WDQS controls to the device should be
supported.
WDQS Control Mode 1 – Read-Based Control
The device needs to be guaranteed the differential WDQS, but the differential WDQS can be controlled
as described below. WDQS control requirements here can be ignored while differential read DQS is
operated or while DQS hands over from read to write or vice versa.
1. When WRITE/MASKED WRITE command is issued, SoC makes the transition from driving DQS_c
HIGH to driving differential DQS_t/DQS_c, followed by normal differential burst on DQS pins.
2. At the end of post amble of WRITE/MASKED WRITE burst, SoC resumes driving DQS_c HIGH
through the subsequent states except for DQS toggling and DQS turn around time of WT-RD and
RD-WT as long as CKE is HIGH.
3. When CKE is LOW, the state of DQS_t/DQS_c is allowed to be “Don’t Care.”
Figure 39: WDQS Control Mode 1
WT
CMD
WT BURST
Following states from WT burst
CKE
DQS_c
DQS_t
Don’t Care
WDQS Control Mode 2 – WDQS_On/Off
After WRITE/MASKED WRITE command is issued, DQS_t and DQS_c required to be differential from
WDQS_on, and DQS_t and DQS_c can be “Don’t Care” status from WDQS_off of WRITE/MASKED
WRITE command. When ODT is enabled, WDQS_on and WDQS_off timing is located in the middle of
the operations. When host disables ODT, WDQS_on and WDQS_off constraints conflict with tRTW.
The timing does not conflict when ODT is enabled because WDQS_on and WDQS_off timing is covered
in ODTLon and ODTLoff. However, regardless of ODT on/off, WDQS_on/off timing below does not
change any command timing constraints for all read and write operations. To prevent the conflict,
WDQS_on/off requirement can be ignored where WDQS_on/off timing is overlapped with read operCCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
100
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
ation period including READ burst period and tRPST or overlapped with turn-around time (RD-WT or
WT-RD). In addition, the period during DQS toggling caused by read and write can be counted as
WDQS_on/off.
Parameters
• WDQS_on: The maximum delay from WRITE/MASKED WRITE command to differential DQS_t and
DQS_c
• WDQS_off: The minimum delay for DQS_t and DQS_c differential input after the last
WRITE/MASKED WRITE command
• WDQS_Exception: The period where WDQS_on and WDQS_off timing is overlapped with READ
operation or with DQS turn around (RD-WT, WT-RD)
– WDQS_Exception @ ODT disable = MAX(WL-WDQS_on + tDQSTA - tWPRE - n tCK, 0 tCK) where
RD to WT command gap = tRTW(MIN)@ODT disable + n tCK
– WDQS_Exception @ ODT enable = tDQSTA
Table 107: WDQS_On/WDQS_Off Definition
WRITE
Latency
WDQS_On
(Max)
WDQS_Off
(Min)
Set A
Set B
nWR
nRTP
Set A
Set B
Set A
Set B
Lower
Frequency
Limit (>)
Upper
Frequency
Limit (≤)
4
4
6
8
0
0
15
15
10
266
6
8
10
8
0
0
18
20
266
533
8
12
16
8
0
6
21
25
533
800
10
18
20
8
4
12
24
32
800
1066
12
22
24
10
4
14
27
37
1066
1333
14
26
30
12
6
18
30
42
1333
1600
16
30
34
14
6
20
33
47
1600
1866
18
34
40
16
8
24
36
52
1866
2133
Notes: 1. WDQS_on/off requirement can be ignored when WDQS_on/off timing is overlapped with READ operation period
including READ burst period and tRPST or overlapped with turn-around time (RD-WT or WT-RD).
2. DQS toggling period caused by read and write can be counted as WDQS_on/off.
Table 108: WDQS_On/WDQS_Off Allowable Variation Range
Min
Max
Unit
WDQS_on
–0.25
0.25
tCK(avg)
WDQS_off
–0.25
0.25
tCK(avg)
Table 109: DQS Turn-Around Parameter
Parameter
t
DQSTA
Note: 1.
Description
Value
Unit
Note
Turn-around time RDQS to WDQS for WDQS control case
TBD
–
1
tDQSTA
is only applied to WDQS_exception case when WDQS Control. Except for WDQS Control, tDQSTA can be
ignored.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
101
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Figure 40: Burst WRITE Operation
T0
T1
T2
T3
BL
BA0,
CA,AP
CA
CA
T4
Ta0
Ta1
Ta2
DES
DES
DES
DES
Ta3
Ta4
Ta5
Ta6
Ta7
Ta8
Ta9
Ta10
Ta11
Ta12
Ta13
Ta14
Ta15
Ta16
Ta17
Ta18
Ta19
Ta20
Ta21
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
WRITE-1
CAS-2
WL
WDQS_off
t DQSS(MIN)
tWPRE
WDQS_on
t WPST
DQS_c
DQS_t
t DQS2DQ
DI
DI DI DI
n0 n1
n0
n2 n3
DQ
DI DI DI DI DI DI DI DI DI DI DI DI
n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15
t
DQSS(MAX)
t
t WPRE
WPST
DQS_c
DQS_t
t
DQS2DQ
DI
n0 DI DI DI
n0 n1 n2 n3
DQ
ODTLon
DI DI DI DI DI DI DI DI DI DI DI DI
n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15
tODTon(MAX)
tODTon(MIN)
DRAM RTT
ODT High-Z
Transion
Transition
ODT on
ODTL off
ODT High-Z
tODToff(MIN)
tODToff(MAX)
Don’t Care
Notes: 1.
2.
3.
4.
BL=16, Write postamble = 0.5nCK, DQ/DQS: VSSQ termination.
DI n = data-in to column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
DRAM RTT is only applied when ODT is enabled (MR11 OP[2:0] is not 000b).
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
102
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Figure 41: Burst READ Followed by Burst WRITE or Burst MASKED WRITE (ODT Disable)
T0
T1
T2
T3
BL
BA0,
CA, AP
CA
CA
T8
T4
T a0
Ta1
T a2
T a3
T a4
BL
BA0,
CA, AP
CA
CA
Tb0
Tb1
Tb2
Tb3
Tb4
Tb5
Tb6
T b7
Tc0
Tc1
Tc2
Tc3
Tc4
Tc5
Tc6
Tc7
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
CAS-2
READ-1
DES
DES
DES
CAS-2
WR-1/MWR-1
RL + RU(tDQSCK(MAX)/ tCK) + BL/2 + RD(tRPST) - WL + tWPRE
t
WL
DQSS
WDQS_off
WDQS_on
t
RL
WDQS_exception
DQSCK
t
BL/2 = 8
t
RPRE
WPRE
DQS_c
DQS_t
t
D0
n0
DQ
t
DQSQ
t
RPST
t
DQSTA
DQS2DQ
DI
n0
D0 D0 D0 D0 D0 D0 D0
n9 n10 n11 n12 n13 n14 n15
DI DI DI DI
DI DI DI
n9 n10 n11 n12 n13 n14 n15
Don’t Care
Notes: 1.
2.
3.
4.
BL = 16, Read preamble = Toggle, Read postamble = 0.5nCK, Write preamble = 2nCK, Write postamble = 0.5nCK.
DO n = data-out from column n, DI n = data-in to column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
WDQS_on and WDQS_off requirement can be ignored where WDQS_on/off timing is overlapped with READ operation period including READ burst period and tRPST or overlapped with turn-around time (RD-WT or WT-RD).
Figure 42: Burst READ Followed by Burst WRITE or Burst MASKED WRITE (ODT Enable)
T0
T1
T2
T3
BL
BA0,
CA,AP
CA
CA
T4
T8
Ta0
Ta1
Ta2
Ta3
Ta4
BL
BA0,
CA,AP
CA
CA
Tb0
Tb1
Tb2
Tb3
Tb4
Tc0
Tc1
DES
DES
DES
DES
DES
DES
DES
Tc2
Td0
Td1
Td2
Td3
Td4
Te0
Te1
Te2
Te3
DES
DES
DES
DES
DES
DES
DES
DES
DES
Te4
Te5
Te6
Tf0
Tf1
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
READ-1
CAS-2
DES
DES
DES
CAS-2
WR-1/MWR-1
DES
RL + RU(tDQSCK(MAX)/ tCK) + BL/2 + RD(tRPST)
- ODTLon - RD(tODTon(MIN)/ tCK) + 1
DES
t
DQSS
WL
WDQS_off
ODTL_off
WDQS_on
ODTLon
t
DQSCK
RL
t
BL/2 = 8
t WPRE
RPRE
DQS_c
DQS_t
t
DQ
tRPST
DQSQ
DO
n0
DO DO
n9 n10
t
DQSTA
t
DI
DO DO DO DO DO
n11 n12 n13 n14 n15
n0
DQS2DQ
DI
n9
DI
DI
DI
DI
DI
ODToff,max
ODTon,min
DRAM RTT
DI
n10 n11 n12 n13 n14 n15
ODTon,max
ODT High-Z
Transion
ODToff,min
Transition ODT On
Transion
ODT High-Z
Don’t Care
Notes: 1. BL = 16, Read preamble = Toggle, Read postamble = 0.5nCK, Write preamble = 2nCK, Write postamble = 0.5nCK,
DQ/DQS: VSSQ termination.
2. DO n = data-out from column n, DI n = data-in to column n.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
103
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
4. WDQS_on and WDQS_off requirement can be ignored where WDQS_on/off timing is overlapped with READ operation period including READ burst period and tRPST or overlapped with turn-around time (RD-WT or WT-RD).
Preamble and Postamble Behavior
Preamble, Postamble Behavior in READ-to-READ Operations
The following illustrations show the behavior of the device's read DQS_t and DQS_c pins during cases
where the preamble, postamble, and/or data clocking overlap.
DQS will be driven with the following priority
1. Data clocking edges will always be driven
2. Postamble
3. Preamble
Essentially the data clocking, preamble, and postamble will be ordered such that all edges will be
driven.
Additional examples of seamless and borderline non-overlapping cases have been included for clarity.
READ-to-READ Operations – Seamless
Figure 43: READ Operations: tCCD = MIN, Preamble = Toggle, 1.5nCK Postamble
T0
T1
T2
T3
BL
BA0,
CA, AP
CAn
CAn
T4
T7
T8
T9
T10
T11
CAm
CAm
T12
T13
T14
T15
T16
T17
T18
T19
T20
T26
T27
T28
T29
T30
T31
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
READ-1
CAS-2
BL
DES
DES
t
BA0,
CA, AP
READ-1
CAS-2
CCD = 8
RL = 6
t
RL = 6
t
DQSCK
DQSCK
t
t
RPST
RPRE
DQS_c
DQS_t
High-Z
High-Z
t
DQSQ
t
DQSQ
DQ
DMI
High-Z
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 m0 m1 m12 m13 m14 m15
BL/2 = 8
High-Z
BL/2 = 8
Don’t Care
Notes: 1. BL = 16 for column n and column m; RL = 6; Preamble = Toggle; Postamble = 1.5nCK.
2. DOUT n/m = data-out from column n and column m.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
104
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
READ-to-READ Operations – Consecutive
Figure 44: Seamless READ: tCCD = MIN + 1, Preamble = Toggle, 1.5nCK Postamble
T0
T1
T2
T3
BL
BA0,
CA, AP
CAn
CAn
T4
T7
T8
T9
T10
T11
T12
BL
BA0,
CA, AP
CAm
CAm
T13
T14
T15
T16
T17
T18
T19
T20
T21
T26
T27
T28
T29
T30
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
READ-1
CAS-2
DES
DES
t
DES
READ-1
CAS-2
CCD = 9
t
RL = 6
t
RL = 6
DQSCK
DQSCK
t
t
RPST
RPRE
t
RPST
DQS_c
High-Z
DQS_t
High-Z
t
t
DQSQ
DQ
DMI
DQSQ
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15
High-Z
High-Z
DOUT DOUT DOUT DOUT DOUT DOUT
m0 m1 m12 m13 m14 m15
BL/2 = 8
High-Z
BL/2 = 8
Don’t Care
Notes: 1. BL = 16 for column n and column m; RL = 6; Preamble = Toggle; Postamble = 1.5nCK.
2. DOUT n/m = data-out from column n and column m.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
Figure 45: Consecutive READ: tCCD = MIN + 1, Preamble = Toggle, 0.5nCK Postamble
T0
T1
T2
T3
BL
BA0,
CA, AP
CAn
CAn
T4
T7
T8
T9
T10
T11
T12
CAm
CAm
T13
T14
T15
T16
T17
T18
T19
T20
T21
T26
T27
T28
T29
T30
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
READ-1
CAS-2
BL
DES
DES
t
DES
BA0,
CA, AP
READ-1
CAS-2
CCD = 9
RL = 6
t
RL = 6
t
DQSCK
DQSCK
t
t
RPRE
t
RPST
RPRE
t
RPST
DQS_c
DQS_t
High-Z
High-Z
t
t
DQSQ
DQ
DMI
High-Z
DQSQ
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15
BL/2 = 8
High-Z
DOUT DOUT DOUT DOUT DOUT DOUT
m0 m1 m12 m13 m14 m15
High-Z
BL/2 = 8
Don’t Care
Notes: 1. BL = 16 for column n and column m; RL = 6; Preamble = Toggle; Postamble = 0.5nCK.
2. DOUT n/m = data-out from column n and column m.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
105
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Figure 46: Consecutive READ: tCCD = MIN + 1, Preamble = Static, 1.5nCK Postamble
T0
T1
T2
T3
BL
BA0,
CA, AP
CAn
CAn
T4
T7
T8
T9
T10
T11
T12
BL
BA0,
CA, AP
CAm
CAm
T13
T14
T15
T16
T17
T18
T19
T20
T21
T26
T27
T28
T29
T30
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
READ-1
CAS-2
DES
DES
t
DES
READ-1
CAS-2
CCD = 9
t
RL = 6
t
RL = 6
DQSCK
DQSCK
t
t
RPRE
t
RPST
RPST
DQS_c
High-Z
DQS_t
High-Z
t
t
DQSQ
DQ
High-Z
DMI
DQSQ
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15
High-Z
DOUT DOUT DOUT DOUT DOUT DOUT
m0 m1 m12 m13 m14 m15
BL/2 = 8
High-Z
BL/2 = 8
Don’t Care
Notes: 1. BL = 16 for column n and column m; RL = 6; Preamble = Static; Postamble = 1.5nCK.
2. DOUT n/m = data-out from column n and column m.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
Figure 47: Consecutive READ: tCCD = MIN + 1, Preamble = Static, 0.5nCK Postamble
T0
T1
T2
T3
BL
BA0,
CA, AP
CAn
CAn
T4
T7
T8
T9
T10
T11
T12
CAm
CAm
T13
T14
T15
T16
T17
T18
T19
T20
T21
T26
T27
T28
T29
T30
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
READ-1
CAS-2
BL
DES
DES
t
DES
BA0,
CA, AP
READ-1
CAS-2
CCD = 9
RL = 6
RL = 6
t
t
DQSCK
DQSCK
t
t
RPRE
t
RPRE
RPST
DQS_c
DQS_t
High-Z
High-Z
t
t
DQSQ
DQ
DMI
High-Z
DQSQ
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15
BL/2 = 8
High-Z
DOUT DOUT DOUT DOUT DOUT DOUT
m0 m1 m12 m13 m14 m15
High-Z
BL/2 = 8
Don’t Care
Notes: 1. BL = 16 for column n and column m; RL = 6; Preamble = Static; Postamble = 0.5nCK.
2. DOUT n/m = data-out from column n and column m.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
106
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Figure 48: Consecutive READ: tCCD = MIN + 2, Preamble = Toggle, 1.5nCK Postamble
T0
T1
T2
T3
BL
BA0,
CA, AP
CAn
CAn
T4
T7
T8
T9
T10
T11
T12
T13
BL
BA0,
CA, AP
CAm
CAm
T14
T15
T16
T17
T18
T19
T20
T21
T22
T28
T29
T30
T31
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
READ-1
CAS-2
DES
DES
t
DES
DES
READ-1
CAS-2
CCD = 10
t
RL = 6
t
RL = 6
DQSCK
DQSCK
t
t
RPRE
RPST
t
t
RPRE
RPST
DQS_c
High-Z
DQS_t
High-Z
t
DQ
DQSQ
DQSQ
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15
High-Z
DMI
t
High-Z
DOUT DOUT DOUT DOUT DOUT DOUT
m0 m1 m12 m13 m14 m15
BL/2 = 8
High-Z
BL/2 = 8
Don’t Care
Notes: 1. BL = 16 for column n and column m; RL = 6; Preamble = Toggle; Postamble = 1.5nCK.
2. DOUT n/m = data-out from column n and column m.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
Figure 49: Consecutive READ: tCCD = MIN + 2, Preamble = Toggle, 0.5nCK Postamble
T0
T1
T2
T3
BL
BA0,
CA, AP
CAn
CAn
T4
T7
T8
T9
T10
T11
T12
T13
BL
BA0,
CA, AP
CAm
CAm
T14
T15
T16
T17
T18
T19
T20
T21
T22
T28
T29
T30
T31
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
READ-1
CAS-2
DES
DES
t
DES
DES
READ-1
CAS-2
CCD = 10
RL = 6
t
RL = 6
t
DQSCK
DQSCK
t
RPRE
t
RPST
t
RPRE
t
RPST
DQS_c
DQS_t
High-Z
High-Z
t
DQ
DMI
High-Z
t
DQSQ
DQSQ
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15
BL/2 = 8
High-Z
DOUT DOUT DOUT DOUT DOUT DOUT
m0 m1 m12 m13 m14 m15
High-Z
BL/2 = 8
Don’t Care
Notes: 1. BL = 16 for column n and column m; RL = 6; Preamble = Toggle; Postamble = 0.5nCK.
2. DOUT n/m = data-out from column n and column m.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
107
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Figure 50: Consecutive READ: tCCD = MIN + 2, Preamble = Static, 1.5nCK Postamble
T0
T1
T2
T3
BL
BA0,
CA, AP
CAn
CAn
T4
T7
T8
T9
T10
T11
T12
T13
BL
BA0,
CA, AP
CAm
CAm
T14
T15
T16
T17
T18
T19
T20
T21
T22
T28
T29
T30
T31
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
READ-1
CAS-2
DES
DES
t
DES
DES
READ-1
CAS-2
CCD = 10
t
RL = 6
t
RL = 6
DQSCK
DQSCK
t
t
RPRE
t
RPST
t
RPRE
RPST
DQS_c
High-Z
DQS_t
High-Z
t
DQ
DQSQ
DQSQ
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15
High-Z
DMI
t
High-Z
DOUT DOUT DOUT DOUT DOUT DOUT
m0 m1 m12 m13 m14 m15
BL/2 = 8
High-Z
BL/2 = 8
Don’t Care
Notes: 1. BL = 16 for column n and column m; RL = 6; Preamble = Static; Postamble = 1.5nCK.
2. DOUT n/m = data-out from column n and column m.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
Figure 51: Consecutive READ: tCCD = MIN + 2, Preamble = Static, 0.5nCK Postamble
T0
T1
T2
T3
BL
BA0,
CA, AP
CAn
CAn
T4
T7
T8
T9
T10
T11
T12
T13
BL
BA0,
CA, AP
CAm
CAm
T14
T15
T16
T17
T18
T19
DES
DES
DES
DES
DES
DES
T20
T21
T22
T28
T29
T30
T31
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
READ-1
CAS-2
DES
DES
t
DES
DES
READ-1
CAS-2
CCD = 10
RL = 6
t
RL = 6
t
DQSCK
DQSCK
t
RPRE
t
RPST
t
RPRE
t
RPST
DQS_c
DQS_t
High-Z
High-Z
t
DQ
DMI
High-Z
t
DQSQ
DQSQ
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15
BL/2 = 8
High-Z
DOUT DOUT DOUT DOUT DOUT DOUT
m0 m1 m12 m13 m14 m15
High-Z
BL/2 = 8
Don’t Care
Notes: 1. BL = 16 for column n and column m; RL = 6; Preamble = Static; Postamble = 0.5nCK.
2. DOUT n/m = data-out from column n and column m.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
108
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Figure 52: Consecutive READ: tCCD = MIN + 3, Preamble = Toggle, 1.5nCK Postamble
T0
T1
T2
T3
BL
BA0,
CA, AP
CAn
CAn
T4
T7
T8
T9
T10
T11
T12
T13
T14
BL
BA0,
CA, AP
CAm
CAm
T15
T16
T17
T18
T19
T20
T21
T22
T23
T29
T30
T31
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
READ-1
CAS-2
DES
DES
t
DES
DES
DES
READ-1
CAS-2
CCD = 11
t
RL = 6
t
RL = 6
DES
DQSCK
DQSCK
t
t
RPRE
t
RPST
t
RPRE
RPST
DQS_c
High-Z
DQS_t
High-Z
t
DQ
DQSQ
DQSQ
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15
High-Z
DMI
t
DOUT DOUT DOUT DOUT DOUT DOUT
m0 m1 m12 m13 m14 m15
High-Z
BL/2 = 8
High-Z
BL/2 = 8
Don’t Care
Notes: 1. BL = 16 for column n and column m; RL = 6; Preamble = Toggle; Postamble = 1.5nCK.
2. DOUT n/m = data-out from column n and column m.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
Figure 53: Consecutive READ: tCCD = MIN + 3, Preamble = Toggle, 0.5nCK Postamble
T0
T1
T2
T3
BL
BA0,
CA, AP
CAn
CAn
T4
T7
T8
T9
T10
T11
T12
T13
T14
BL
BA0,
CA, AP
CAm
CAm
T15
T16
T17
T18
T19
T20
DES
DES
DES
DES
DES
DES
T21
T22
T23
T29
T30
T31
DES
DES
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
READ-1
CAS-2
DES
DES
t
DES
DES
DES
READ-1
CAS-2
CCD = 11
RL = 6
t
RL = 6
t
DQSCK
DQSCK
t
t
RPRE
t
RPST
RPRE
t
RPST
DQS_c
DQS_t
High-Z
High-Z
t
DQ
DMI
High-Z
DES
High-Z
t
DQSQ
DQSQ
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15
High-Z
DOUT DOUT DOUT DOUT DOUT DOUT
m0 m1 m12 m13 m14 m15
BL/2 = 8
High-Z
BL/2 = 8
Don’t Care
Notes: 1. BL = 16 for column n and column m; RL = 6; Preamble = Toggle; Postamble = 0.5nCK.
2. DOUT n/m = data-out from column n and column m.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
109
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Figure 54: Consecutive READ: tCCD = MIN + 3, Preamble = Static, 1.5nCK Postamble
T0
T1
T2
T3
BL
BA0,
CA, AP
CAn
CAn
T4
T7
T8
T9
T10
T11
T12
T13
T14
BL
BA0,
CA, AP
CAm
CAm
T15
T16
T17
T18
T19
T20
DES
DES
DES
DES
DES
DES
T21
T22
T23
T29
T30
T31
DES
DES
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
READ-1
CAS-2
DES
DES
t
DES
DES
DES
READ-1
CAS-2
CCD = 11
t
RL = 6
t
RL = 6
DES
DQSCK
DQSCK
t
t
RPRE
t
RPST
t
RPRE
RPST
DQS_c
High-Z
DQS_t
High-Z
t
t
DQSQ
DQ
DMI
DQSQ
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15
High-Z
DOUT DOUT DOUT DOUT DOUT DOUT
m0 m1 m12 m13 m14 m15
High-Z
BL/2 = 8
High-Z
BL/2 = 8
Don’t Care
Notes: 1. BL = 16 for column n and column m; RL = 6; Preamble = Static; Postamble = 1.5nCK.
2. DOUT n/m = data-out from column n and column m.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
Figure 55: Consecutive READ: tCCD = MIN + 3, Preamble = Static, 0.5nCK Postamble
T0
T1
T2
T3
BL
BA0,
CA, AP
CAn
CAn
T4
T7
T8
T9
T10
T11
T12
T13
T14
BL
BA0,
CA, AP
CAm
CAm
T15
T16
T17
T18
T19
T20
T21
T22
T23
T29
T30
T31
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
READ-1
CAS-2
DES
DES
t
DES
DES
DES
READ-1
CAS-2
CCD = 11
RL = 6
t
RL = 6
t
DES
DQSCK
DQSCK
t
t
RPRE
t
RPST
RPRE
t
RPST
DQS_c
DQS_t
High-Z
High-Z
High-Z
t
t
DQSQ
DQ
DMI
High-Z
DQSQ
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT
n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15
High-Z
DOUT DOUT DOUT DOUT DOUT DOUT
m0 m1 m12 m13 m14 m15
BL/2 = 8
High-Z
BL/2 = 8
Don’t Care
Notes: 1. BL = 16 for column n and column m; RL = 6, Preamble = Static; Postamble = 0.5nCK
2. DOUT n/m = data-out from column n and column m.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
110
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
WRITE-to-WRITE Operations – Seamless
Figure 56: Seamless WRITE: tCCD = MIN, 0.5nCK Postamble
T0
T1
T2
T3
BL
BA0,
CA
CAn
CAn
T4
T5
T6
T7
T8
T9
T10
T11
BL
BA0,
CA
CAm
CAm
T12
T13
T14
T15
T16
T17
T18
T23
T24
T25
T26
T27
T28
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
CS
CA
Command
WRITE-1
CAS-2
DES
DES
t
DES
DES
WRITE-1
CAS-2
CCD = 8
WL = 4
WL = 4
t
t
t
DQSS
DQSS
WPRE
t
WPST
DQS_c
DQS_t
t
DQS2DQ
t
DQS2DQ
DQ
DMI
DIN
n0
DIN DIN DIN
n1 n2 n3
DIN
n4
DIN DIN
n5 n6
DIN
n7
DIN
n8
BL/2 = 8
DIN
n9
DIN DIN DIN DIN DIN DIN
n10 n11 n12 n13 n14 n15
DIN
m0
DIN
m1
DIN
m2
DIN
m3
DIN
m12
DIN DIN DIN
m13 m14 m15
BL/2 = 8
Don’t Care
Notes: 1. BL = 16, Write postamble = 0.5nCK.
2. DIN n/m = data-in from column n and column m.
3. The minimum number of clock cycles from the burst WRITE command to the burst WRITE command for any bank
is BL/2.
4. DES commands are shown for ease of illustration; other commands may be valid at these times.
CCM005-554574167-10809
z42m_embedded_lpddr4x_lpddr4.pdf - Rev. G 05/2022 EN
111
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2021 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
LPDDR4X/LPDDR4 SDRAM
General LPDDR4X Specification
Figure 57: Seamless WRITE: tCCD = MIN, 1.5nCK Postamble, 533 MHz < Clock Frequency